Nothing
#'Functions to compute Bayes factor hypothesis tests for common research designs
#'and hypotheses.
#'
#'This package contains function to compute Bayes factors for a number of
#'research designs and hypotheses, including t tests, ANOVA, and linear
#'regression.
#'
#'\tabular{ll}{ Package: \tab BayesFactor\cr Type: \tab Package\cr Version: \tab
#'0.9.5\cr Date: \tab 2013-3-20\cr License: \tab GPL 2.0\cr LazyLoad: \tab
#'yes\cr } The following methods are currently implemented, with more to follow:
#'
#'Linear regression: \code{\link{regressionBF}} \code{\link{lmBF}},
#'\code{\link{linearReg.R2stat}};
#'
#'t test: \code{\link{ttestBF}}, \code{\link{ttest.tstat}};
#'
#'ANOVA: \code{\link{anovaBF}}, \code{\link{lmBF}},
#'\code{\link{oneWayAOV.Fstat}};
#'
#'Other useful functions: \code{\link{posterior}}, for sampling from posterior
#'distributions; \code{\link{recompute}}, for re-estimating a Bayes factor or
#'posterior distribution; \code{\link{compare}}, to compare two model
#'posteriors; and \code{\link{plot.BFBayesFactor}}, for plotting Bayes factor
#'objects.
#'
#'@name BayesFactor-package
#'@aliases BayesFactor-package BayesFactor
#'@docType package
#'@author Richard D. Morey and Jeffrey N. Rouder
#'
#' Maintainer: Richard D. Morey <richarddmorey@@gmail.com>
#'@seealso \code{\link[BAS:BAS-package]{BAS}}
#'@references Liang, F. and Paulo, R. and Molina, G. and Clyde, M. A. and
#' Berger, J. O. (2008). Mixtures of g-priors for Bayesian Variable Selection.
#' Journal of the American Statistical Association, 103, pp. 410-423
#'
#' Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., \& Iverson, G.
#' (2009). Bayesian t-tests for accepting and rejecting the null hypothesis.
#' Psychonomic Bulletin & Review, 16, 752-760
#'
#' Rouder, J. N., Morey, R. D., Speckman, P. L., Province, J. M., (2012)
#' Default Bayes Factors for ANOVA Designs. Journal of Mathematical Psychology.
#' 56. p. 356-374.
#'
#' Perception and Cognition Lab (University of Missouri): Bayes factor
#' calculators. \url{http://pcl.missouri.edu/bayesfactor}
#'@keywords htest
#'@examples
#'
#'## See specific functions for examples.
#'
#'@useDynLib BayesFactor
NULL
#'Puzzle completion times from Hays (1994)
#'
#'Puzzle completion time example data from Hays (1994).
#'
#'Hays (1994; section 13.21, table 13.21.2, p. 570) describes a experiment
#'wherein 12 participants complete four puzzles each. Puzzles could be either
#'square or round, and either monochromatic or in color. Each participant
#'completed every combination of the two factors.
#'
#'@name puzzles
#'@docType data
#'@format A data frame with 48 observations on 3 variables. \describe{
#'\item{RT}{Puzzle completion time, in minutes} \item{ID}{the
#'subject identifier} \item{shape}{shape of the puzzle (round or
#'square)} \item{color}{color content of the puzzle (monochromatic or
#'color)} }
#'@source Hays, W. L. (1994), Statistics (5th edition), Harcourt Brace, Fort
#'Worth, Texas
#'@keywords datasets
#'@examples
#'
#'data(puzzles)
#'
#'## classical ANOVA
#'## Both color and shape are significant, interaction is not
#'classical <- aov(RT ~ shape*color + Error(ID/(shape*color)), data=puzzles)
#'summary(classical)
#'
#'## Bayes Factor
#'## Best model is main effects model, no interaction
#' anovaBF(RT ~ shape*color + ID, data = puzzles, whichRandom = "ID", progress=FALSE)
#'
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.