Description Usage Arguments Value Author(s) References See Also Examples
View source: R/computeAlphaLimitedSampling.R
For sampling strategy "limited sampling" (see Ziller et al., 2002) the function computes the herd-level alpha-errors (= 1-herd sensitivity) for each stock size, as well as the average herd-level alpha-error.
1 2 3 | computeAlphaLimitedSampling(stockSizeVector, sampleSizeLtd,
intraHerdPrevalence, diagSensitivity,
diagSpecificity = 1, groupVec = NULL)
|
stockSizeVector |
Integer vector. Stock sizes of the herds. |
sampleSizeLtd |
Integer. Sample size for limited sampling, i.e., for each herd
|
intraHerdPrevalence |
Numeric between 0 and 1. Intra-herd prevalence. The number of diseased
animals per herd is computed as
|
diagSensitivity |
Numeric between 0 and 1. Sensitivity (= probability of a testpositive result, given the tested individual is diseased) of the diagnostic test. |
diagSpecificity |
Numeric between 0 and 1. Specificity (= probability of a testnegative result, given the tested individual is not diseased) of the diagnostic test. |
groupVec |
Character vector. Optional parameter. If specified it must have the same length
as |
List of 3 elements:
alphaDataFrame |
Data frame. Variables |
meanAlpha |
Numeric between 0 and 1. Mean alpha-error attained by strategy "limited sampling" for given sample size and herd size distribution. |
meanAlphaRiskGroups |
If |
Ian Kopacka <ian.kopacka@ages.at>
M. Ziller, T. Selhorst, J. Teuffert, M. Kramer and H. Schlueter, "Analysis of sampling strategies to substantiate freedom from disease in large areas", Prev. Vet. Med. 52 (2002), pp. 333-343.
1 2 3 4 5 | data(sheepData)
alphaList <- computeAlphaLimitedSampling(stockSizeVector =
sheepData$nSheep, sampleSizeLtd = 7,
intraHerdPrevalence = 0.2, diagSensitivity = 0.9,
diagSpecificity = 1)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.