computeAposterioriErrorRiskGroups: FUNCTION to compute the a-posteriori error considering a...

Description Usage Arguments Details Value Author(s) Examples

View source: R/computeAposterioriErrorRiskGroups.R

Description

For a sampling scheme designed to substantiate freedom from disease the function computes the a-posteriori alpha-error, i.e., the actual alpha-error based on the drawn sample, when the population is stratified into risk groups for which the relative infection risk is known.

Usage

1
2
3
computeAposterioriErrorRiskGroups(alphaErrorVector, 
    groupVec, groupLevels, nPopulationVec, nRelRiskVec, 
    nDiseased, method = "default")

Arguments

alphaErrorVector

Numeric vector. Alpha-error (between 0 and 1) of each herd in the sample.

groupVec

Character vector. Risk group to which each of the herds in the sample belongs. Must have the same length (and order) as alphaErrorVector.

groupLevels

Character vector. (Unique) levels/names of the risk group. Defines the order of the values in nPopulationVec and nRelRiskVec.

nPopulationVec

Integer vector. Population sizes of the risk groups. Must have the same length (and order) as groupLevels.

nRelRiskVec

Numeric vector. (Relative) infection risks of the risk groups. Must have the same length (and order) as groupLevels.

nDiseased

Integer. Number of diseased herds in the population according to the design prevalence.

method

Character string. "exact" for exact error, "approx" for approximation (recommended for nDiseased > 7).

Details

The exact evaluation of the alpha-error is computationally complex, due to combinatirical issues. In order to increase effectivity parts of the code were implemented in C. Still, for nDiseased > 3 the computation may take very long and it is generally not recommended to use the exact calculation. Rather the approximation should be used for nDiseased > 3.

Value

The return value is the a-posteriori alpha-error based on the sample at hand (numeric scalar).

Author(s)

Ian Kopacka <ian.kopacka@ages.at>

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
data(sheepData)
sheepData$size <- ifelse(sheepData$nSheep < 30, "small", "large")
riskValueData <- data.frame(riskGroup = c("small", "large"), 
    riskValues = c(1,2))
mySurvey <- surveyData(nAnimalVec = sheepData$nSheep,
		riskGroupVec = sheepData$size,
		riskValueData = riskValueData,
		populationData = sheepData, designPrevalence = 0.002,
		alpha = 0.05, intraHerdPrevalence = 0.13,
		diagSensitivity = 0.9, costHerd = 30, costAnimal = 7.1)
## Limited sampling with risk groups:    
myLtdSamplingRG <- ltdSampling(survey.Data = mySurvey, sampleSizeLtd = 20, 
	nSampleFixVec = NULL, probVec = c(1,2))
## Draw sample manually:
set.seed(20110708)
x <- myLtdSamplingRG
indexSampleRG <- sapply(seq(along = x@surveyData@riskValueData$riskGroup), 
	function(ii){
		riskGroup <- as.character(x@surveyData@riskValueData$riskGroup[ii])
		nSampleRG <- x@nHerdsPerRiskGroup[riskGroup]
		indexRG <- which(x@surveyData@riskGroupVec == riskGroup)
		indexOut <- sample(x = indexRG, size = nSampleRG, replace = FALSE)		
	})
indexSample <- sort(Reduce(function(x,y) c(x,y), indexSampleRG))
## Compute the a-posteriori alpha error:
alphaErrorVector <- computeAlpha(nAnimalVec = x@surveyData@nAnimalVec[indexSample], 
     method = "limited", sampleSizeLtd = x@sampleSizeLtd, 
     intraHerdPrevalence = x@surveyData@intraHerdPrevalence, 
     diagSensitivity = x@surveyData@diagSensitivity, diagSpecificity = 1)    
## Determine the number of herds in each risk group:
riskValueDf <- mySurvey@riskValueData[,1:2]
names(riskValueDf) <- c("riskGroup", "riskValues")
riskValueDf$riskGroup <- as.character(riskValueDf$riskGroup)
riskValueDf$id <- seq(along = riskValueDf[,1])
riskGroupTab <- table(mySurvey@riskGroupVec)
riskGroupDf <- data.frame(riskGroup = as.character(names(riskGroupTab)), 
	nPopulation = as.vector(riskGroupTab))
riskValueDf <- merge(x = riskValueDf, y = riskGroupDf, by = "riskGroup",
	sort = FALSE)	
riskValueDf <- riskValueDf[order(riskValueDf$id, decreasing = FALSE),]
aPostAlphaRG <- computeAposterioriErrorRiskGroups(alphaErrorVector = alphaErrorVector, 
     groupVec = x@surveyData@riskGroupVec[indexSample], 
	 groupLevels = riskValueDf$riskGroup,
	 nPopulationVec = riskValueDf$nPopulation,
	 nRelRiskVec = riskValueDf$riskValues,
     nDiseased = max(round(length(x@surveyData@nAnimalVec)*x@surveyData@designPrevalence),1), 
     method = "approx")     

FFD documentation built on Dec. 21, 2020, 3:02 p.m.