Creates an object of the class 'LtdSamplingSummary'. For given survey parameters
(passed to the function as an object of the class SurveyData
)
ltdSamplingSummary()
computes the mean herd sensitivity, the number of herds to test,
the expected total number of animals to test and the expected total cost of a survey
using limited sampling with a given sequence of animallevel sample sizes. This sequence
ranges from 1 to a given upper bound sampleSizeLtdMax
. If no upper bound is
specified the maximal herd size is used.
1 2  ltdSamplingSummary(survey.Data, sampleSizeLtdMax, nSampleFixVec = NULL,
probVec = NULL)

survey.Data 
Object of class 
sampleSizeLtdMax 
Positive integer. A series of parameters is computed
for a sequence of sample limits. These sample limits
range from 1 to a given upper bound, defined by

nSampleFixVec 
Numeric vector containing some NAs (optional argument).
For risk groups for which the sample size is fixed
specify the sample size. For the risk groups for which
the sample size should be computed set NA (order of the
risk groups must be the same order as in 
probVec 
Numeric vector. For those risk groups for which the
sample size should be computed sample probabilities must
be specified.
The vector must have the same length as the number of
NA entries in 
The function returns an object of the class LtdSamplingSummary
.
Ian Kopacka <ian.kopacka@ages.at>
A.R. Cameron and F.C. Baldock, "A new probablility formula to substantiate freedom from disease", Prev. Vet. Med. 34 (1998), pp. 117.
A.R. Cameron and F.C. Baldock, "Twostage sampling surveys to substantiate freedom from disease", Prev. Vet. Med. 34 (1998), pp. 1930.
M. Ziller, T. Selhorst, J. Teuffert, M. Kramer and H. Schlueter, "Analysis of sampling strategies to substantiate freedom from disease in large areas", Prev. Vet. Med. 52 (2002), pp. 333343.
See LtdSamplingSummary
and SurveyData
for additional details.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16  data(sheepData)
sheepData$size < ifelse(sheepData$nSheep < 30, "small", "large")
riskValueData < data.frame(riskGroup = c("small", "large"),
riskValues = c(1,2))
mySurvey < surveyData(nAnimalVec = sheepData$nSheep,
riskGroupVec = sheepData$size,
riskValueData = riskValueData,
populationData = sheepData, designPrevalence = 0.002,
alpha = 0.05, intraHerdPrevalence = 0.13,
diagSensitivity = 0.9, costHerd = 30, costAnimal = 7.1)
## Limited sampling without risk groups:
myLtdSamplingSummary < ltdSamplingSummary(survey.Data = mySurvey,
sampleSizeLtdMax = 10)
## Limited sampling with risk groups:
myLtdSamplingRG < ltdSamplingSummary(survey.Data = mySurvey,
sampleSizeLtdMax = 10, nSampleFixVec = NULL, probVec = c(1,4))

Questions? Problems? Suggestions? Tweet to @rdrrHQ or email at ian@mutexlabs.com.
Please suggest features or report bugs with the GitHub issue tracker.
All documentation is copyright its authors; we didn't write any of that.