Description Usage Arguments Details Value Author(s) See Also Examples
Computes cross-section(s) of a multi-dimensional likelihood surface
1 2 3 4 5 6 7 8 9 10 11 12 | slice(x, dim=1, ...)
sliceOld(fitted, which = 1:p, maxsteps = 100,
alpha = 0.01, zmax = sqrt(qchisq(1 - alpha/2, p)),
del = zmax/5, trace = FALSE,
tol.newmin=0.001, ...)
slice1D(params,fun,nt=101,lower=-Inf,
upper=Inf,verbose=TRUE,...)
slice2D(params,fun,nt=31,lower=-Inf,
upper=Inf,
cutoff=10,verbose=TRUE,...)
slicetrans(params, params2, fun, extend=0.1, nt=401,
lower=-Inf, upper=Inf)
|
x |
a fitted model object of some sort |
dim |
dimensionality of slices (1 or 2) |
params |
a named vector of baseline parameter values |
params2 |
a vector of parameter values |
fun |
an objective function |
nt |
(integer) number of slice-steps to take |
lower |
lower bound(s) (stub?) |
upper |
upper bound(s) (stub?) |
cutoff |
maximum increase in objective function to allow when computing ranges |
extend |
(numeric) fraction by which to extend range beyond specified points |
verbose |
print verbose output? |
fitted |
A fitted maximum likelihood model of class “mle2” |
which |
a numeric or character vector describing which parameters to profile (default is to profile all parameters) |
maxsteps |
maximum number of steps to take looking for an upper value of the negative log-likelihood |
alpha |
maximum (two-sided) likelihood ratio test confidence level to find |
zmax |
maximum value of signed square root of deviance difference to find (default value corresponds to a 2-tailed chi-squared test at level alpha) |
del |
step size for profiling |
trace |
(logical) produce tracing output? |
tol.newmin |
tolerance for diagnosing a new minimum below the minimum deviance estimated in initial fit is found |
... |
additional arguments (not used) |
Slices provide a lighter-weight way to explore likelihood surfaces than profiles, since they vary a single parameter rather than optimizing over all but one or two parameters.
is a generic method
creates one-dimensional slices, by default of all parameters of a model
creates two-dimensional slices, by default of all pairs of parameters in a model
creates a slice along a transect between two specified
points in parameter space (see calcslice
in the emdbook
package)
An object of class slice
with
a list of individual parameter (or parameter-pair) slices, each of which is a data frame with elements
name of the first variable
(for 2D slices) name of the second variable
parameter values
(for 2D slices) parameter values
slice values
a list (?) of the ranges for each parameter
vector of baseline parameter values
1 or 2
sliceOld
returns instead a list with elements profile
and summary
(see profile.mle2
)
Ben Bolker
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | x <- 0:10
y <- c(26, 17, 13, 12, 20, 5, 9, 8, 5, 4, 8)
d <- data.frame(x,y)
fit1 <- mle2(y~dpois(lambda=exp(lymax)/(1+x/exp(lhalf))),
start=list(lymax=0,lhalf=0),
data=d)
s1 <- slice(fit1,verbose=FALSE)
s2 <- slice(fit1,dim=2,verbose=FALSE)
require(lattice)
plot(s1)
plot(s2)
## 'transect' slice, from best-fit values to another point
st <- slice(fit1,params2=c(5,0.5))
plot(st)
|
Loading required package: stats4
Loading required package: lattice
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.