Description Usage Arguments Value Author(s) Examples
Perform co-expression and co-abudance analysis of high-throughput
sequencing data, with or without data transformation, using a Normal
mixture models. The output of NormMixClus
is an S3 object of
class NormMixClus
.
1 2 |
y_profiles |
(n x q) matrix of observed profiles for n observations and q variables |
K |
Number of clusters (a single value or a sequence of values). |
subset |
Optional vector providing the indices of a subset of
genes that should be used for the co-expression analysis (i.e., row indices
of the data matrix |
parallel |
If |
BPPARAM |
Optional parameter object passed internally to |
... |
Additional optional parameters to be passed to |
An S3 object of class NormMixClus
containing the following:
nbCluster.all |
Vector giving the number of clusters for each of the fitted models |
loglike.all |
Log likelihoods calculated for each of the fitted models |
ICL.all |
ICL values calculated for each of the fitted models |
ICL.results |
Object of class
|
all.results |
List of objects of class |
Andrea Rau, Cathy Maugis-Rabusseau
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | ## Simulate toy data, n = 300 observations
set.seed(12345)
countmat <- matrix(runif(300*4, min=0, max=500), nrow=300, ncol=4)
countmat <- countmat[which(rowSums(countmat) > 0),]
profiles <- transform_RNAseq(countmat, norm="none",
transformation="arcsin")$tcounts
conds <- rep(c("A","B","C","D"), each=2)
## Run the Normal mixture model for K = 2,3
run <- NormMixClus(y=profiles, K=2:3, iter=5)
## Run the Normal mixture model for K=2
run2 <- NormMixClus_K(y=profiles, K=2, iter=5)
## Re-estimate mixture parameters for the model with K=2 clusters
param <- NormMixParam(run2, y_profiles=profiles)
## Summary of results
summary(run, y_profiles=profiles)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.