NormMixClus_K: Normal mixture model estimation

Description Usage Arguments Value Author(s) Examples

Description

Perform co-expression and co-abudance analysis of high-throughput sequencing data, with or without data transformation, using a Normal mixture models for single number of clusters K. The output of NormMixClus_K is an S3 object of class NormMixClus_K.

Usage

1
2
3
4
NormMixClus_K(y_profiles, K, alg.type = "EM", init.runs = 50,
  init.type = "small-em", GaussianModel = "Gaussian_pk_Lk_Ck",
  init.iter = 20, iter = 1000, cutoff = 0.001, verbose = TRUE,
  digits = 3)

Arguments

y_profiles

y (n x q) matrix of observed profiles for n observations and q variables

K

Number of clusters (a single value).

alg.type

Algorithm to be used for parameter estimation: “EM”, “CEM”, “SEM

init.runs

Number of runs to be used for the Small-EM strategy, with a default value of 50

init.type

Type of initialization strategy to be used: “small-em” for the Small-EM strategy, “random”, “CEM”, or “SEMMax

GaussianModel

One of the 28 forms of Gaussian models defined in Rmixmod, by default equal to the "Gaussian_pk_Lk_Ck" (i.e., a general family model with free proportions, free volume, free shape, and free orientation)

init.iter

Number of iterations to be used within each run for the Small-EM strategry, with a default value of 20

iter

Maximum number of iterations to be run for the chosen algorithm

cutoff

Cutoff to declare algorithm convergence

verbose

If TRUE, verbose output is created

digits

Integer indicating the number of decimal places to be used for the probaPost output

Value

An S3 object of class NormMixClus_K containing the following:

probaPost

Matrix containing the conditional probabilities of belonging to each cluster for all observations

log.like

Value of log likelihood

ICL

Value of ICL criterion

nbCluster

Number of clusters (equivalent to K)

GaussianModel

Gaussian model form fit in the mixture model

Author(s)

Cathy Maugis-Rabusseau, Andrea Rau

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
## Simulate toy data, n = 300 observations
set.seed(12345)
countmat <- matrix(runif(300*4, min=0, max=500), nrow=300, ncol=4)
countmat <- countmat[which(rowSums(countmat) > 0),]
profiles <- transform_RNAseq(countmat, norm="none", 
                             transformation="arcsin")$tcounts

conds <- rep(c("A","B","C","D"), each=2)

## Run the Normal mixture model for K = 2,3
run <- NormMixClus(y=profiles, K=2:3, iter=5)

## Run the Normal mixture model for K=2
run2 <- NormMixClus_K(y=profiles, K=2, iter=5)

## Re-estimate mixture parameters for the model with K=2 clusters
param <- NormMixParam(run2, y_profiles=profiles)

## Summary of results
summary(run, y_profiles=profiles)

coseq documentation built on May 2, 2019, 4:55 p.m.