Description Usage Arguments Value Author(s) Examples
Perform co-expression and co-abudance analysis of high-throughput
sequencing data, with or without data transformation, using a Normal
mixture models for single number of clusters K.
The output of NormMixClus_K
is an S3 object of
class NormMixClus_K
.
1 2 3 4 | NormMixClus_K(y_profiles, K, alg.type = "EM", init.runs = 50,
init.type = "small-em", GaussianModel = "Gaussian_pk_Lk_Ck",
init.iter = 20, iter = 1000, cutoff = 0.001, verbose = TRUE,
digits = 3)
|
y_profiles |
y (n x q) matrix of observed profiles for n observations and q variables |
K |
Number of clusters (a single value). |
alg.type |
Algorithm to be used for parameter estimation:
“ |
init.runs |
Number of runs to be used for the Small-EM strategy, with a default value of 50 |
init.type |
Type of initialization strategy to be used:
“ |
GaussianModel |
One of the 28 forms of Gaussian models defined in Rmixmod,
by default equal to the |
init.iter |
Number of iterations to be used within each run for the Small-EM strategry, with a default value of 20 |
iter |
Maximum number of iterations to be run for the chosen algorithm |
cutoff |
Cutoff to declare algorithm convergence |
verbose |
If |
digits |
Integer indicating the number of decimal places to be used for the
|
An S3 object of class NormMixClus_K
containing the following:
probaPost |
Matrix containing the conditional probabilities of belonging to each cluster for all observations |
log.like |
Value of log likelihood |
ICL |
Value of ICL criterion |
nbCluster |
Number of clusters (equivalent to |
GaussianModel |
Gaussian model form fit in the mixture model |
Cathy Maugis-Rabusseau, Andrea Rau
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | ## Simulate toy data, n = 300 observations
set.seed(12345)
countmat <- matrix(runif(300*4, min=0, max=500), nrow=300, ncol=4)
countmat <- countmat[which(rowSums(countmat) > 0),]
profiles <- transform_RNAseq(countmat, norm="none",
transformation="arcsin")$tcounts
conds <- rep(c("A","B","C","D"), each=2)
## Run the Normal mixture model for K = 2,3
run <- NormMixClus(y=profiles, K=2:3, iter=5)
## Run the Normal mixture model for K=2
run2 <- NormMixClus_K(y=profiles, K=2, iter=5)
## Re-estimate mixture parameters for the model with K=2 clusters
param <- NormMixParam(run2, y_profiles=profiles)
## Summary of results
summary(run, y_profiles=profiles)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.