Description Usage Arguments Value Methods (by class) Author(s) Examples
This is the primary user interface for the coseq
package.
Generic S3 functions are implemented to perform co-expression or co-abudance analysis of
high-throughput sequencing data, with or without data transformation, using mixture models.
The supported classes are matrix
, data.frame
, DESeqDataSet
,
DGEList
, DGEExact
, DGEGLM
, and DGELRT
. The output of coseq
is an S3 object of class coseq
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | coseq(y, K, subset = NULL, model = "Normal", transformation = "none",
norm = "TMM", meanFilterCutoff = NULL, modelChoice = "ICL",
parallel = FALSE, BPPARAM = bpparam(), ...)
## S3 method for class 'matrix'
coseq(y, K, subset = NULL, model = "Normal",
transformation = "none", norm = "TMM", meanFilterCutoff = NULL,
modelChoice = "ICL", parallel = FALSE, BPPARAM = bpparam(), ...)
## S3 method for class 'data.frame'
coseq(y, K, subset = NULL, model = "Normal",
transformation = "arcsin", norm = "TMM", meanFilterCutoff = NULL,
modelChoice = "ICL", parallel = FALSE, BPPARAM = bpparam(), ...)
## S3 method for class 'DESeqDataSet'
coseq(y, K, subset = NULL, model = "Normal",
transformation = "arcsin", norm = "TMM", meanFilterCutoff = NULL,
modelChoice = "ICL", parallel = FALSE, BPPARAM = bpparam(), ...)
|
y |
(n x q) matrix of observed counts for n observations and q variables |
K |
Number of clusters (a single value or a vector of values) |
subset |
Optional vector providing the indices of a subset of
genes that should be used for the co-expression analysis (i.e., row indices
of the data matrix |
model |
Type of mixture model to use (“ |
transformation |
Transformation type to be used: “ |
norm |
The type of estimator to be used to normalize for differences in
library size: (“ |
meanFilterCutoff |
Value used to filter low mean normalized counts if desired (by default, set to a value of 50) |
modelChoice |
Criterion used to select the best model. For Gaussian mixture models,
“ |
parallel |
If |
BPPARAM |
Optional parameter object passed internally to |
... |
Additional optional parameters. |
An S3 object of class coseq
containing the following:
results |
Object of class |
model |
Model used, either |
transformation |
Transformation used on the data |
tcounts |
Transformed data using to estimate model |
y_profiles |
Normalized profiles for use in plotting |
matrix
: Perform coseq analysis for matrix
class
data.frame
: Perform coseq analysis for data.frame
class
DESeqDataSet
: Perform coseq analysis for DESeqDataSet
class from DESeq2
package
Andrea Rau
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | ## Simulate toy data, n = 300 observations
set.seed(12345)
countmat <- matrix(runif(300*4, min=0, max=500), nrow=300, ncol=4)
countmat <- countmat[which(rowSums(countmat) > 0),]
conds <- rep(c("A","B","C","D"), each=2)
## Run the Normal mixture model for K = 2,3,4
run_arcsin <- coseq(y=countmat, K=2:4, iter=5, transformation="arcsin")
## Plot and summarize results
plot(run_arcsin)
summary(run_arcsin)
## Compare ARI values for all models (no plot generated here)
ARI <- compareARI(run_arcsin, plot=FALSE)
## Compare ICL values for models with arcsin and logit transformations
run_logit <- coseq(y=countmat, K=2:4, iter=5, transformation="logit")
compareICL(list(run_arcsin, run_logit))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.