Description Usage Arguments Details Value Author(s) References See Also Examples
Quantitative analysis of DCE-MRI typically involves the convolution of an arterial input function (AIF) with a nonlinear pharmacokinetic model of the contrast agent concentration. This function takes a semi-parametric penalized spline smoothing approach, with which the AIF is convolved with a set of B-splines to produce a design matrix using locally adaptive smoothing parameters based on Bayesian penalized spline models (P-splines).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | dcemri.spline(conc, time, img.mask, time.input=time,
model="weinmann", aif="tofts.kermode", user=NULL,
aif.observed=NULL, nriters=500, thin=5,
burnin=100, ab.hyper=c(1e-5,1e-5),
ab.tauepsilon=c(1,1/1000), k=4, p=25, rw=2,
knots=NULL, nlr=FALSE, t0.compute=FALSE,
samples=FALSE, multicore=FALSE, verbose=FALSE, ...)
dcemri.spline.single(conc, time, D, time.input, p, rw, knots, k,
A, t0.compute=FALSE, nlr=FALSE, nriters=500,
thin=5, burnin=100, ab.hyper=c(1e-5,1e-5),
ab.tauepsilon=c(1,1/1000), silent=0,
multicore=FALSE, model=NULL,
model.func=NULL, model.guess=NULL,
samples=FALSE, B=NULL)
|
conc |
An array of Gd concentration |
time |
Time points of aquisition of Gd concentration |
img.mask |
Array of voxels to fit |
time.input |
Time points of observed Arterial Gd concentration, defaults to time |
model |
The type of compartmental model to be used. Acceptable models include: “AATH” or “weinmann” (default). |
aif |
Arterial input function to use. Values include: “tofts.kermode”, “fritz.hansen” or “observed”. If “observed” you must provide the observed concentrations in aif.observed. |
aif.observed |
Arterial concentrations observed at timepoints time.input |
multicore |
Use multicore library |
verbose |
|
nlr |
Return the generated samples |
user |
|
ab.hyper |
|
ab.tauepsilon |
|
p |
|
t0.compute |
|
samples |
|
k |
|
knots |
|
rw |
|
nriters |
|
thin |
|
burnin |
|
D |
|
B |
|
A |
|
silent |
|
model.func |
|
model.guess |
|
... |
See Schmid et al. (2009) for more details.
To be added.
Volker Schmid
Schmid, V., Whitcher, B., Padhani, A.R. and G.-Z. Yang (2009) A semi-parametric technique for the quantitative analysis of dynamic contrast-enhanced MR images based on Bayesian P-splines, IEEE Transactions on Medical Imaging, 28 (6), 789-798.
dcemri.bayes
, dcemri.lm
,
dcemri.map
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | data("buckley")
xi <- seq(5, 300, by=5)
img <- array(t(breast$data)[,xi], c(13,1,1,60))
mask <- array(TRUE, dim(img)[1:3])
time <- buckley$time.min[xi]
## Generate AIF params using the orton.exp function from Buckley's AIF
aif <- buckley$input[xi]
fit.spline <- dcemri.spline(img, time, mask, aif="fritz.hansen",
nriters=250, nlr=TRUE)
fit.spline.aif <- dcemri.spline(img, time, mask, aif="observed",
aif.observed=aif, nriters=250,
nlr=TRUE)
plot(breast$ktrans, fit.spline$ktrans, xlim=c(0,1), ylim=c(0,1),
xlab=expression(paste("True ", K^{trans})),
ylab=expression(paste("Estimated ", K^{trans})))
points(breast$ktrans, fit.spline.aif$ktrans, pch=2)
abline(0, 1, lwd=1.5, col="red")
legend("right", c("fritz.hansen", "observed"), pch=1:2)
cbind(breast$ktrans, fit.spline$ktrans[,,1], fit.spline.aif$ktrans[,,1])
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.