Description Usage Arguments Details Value Author(s) References See Also Examples
Parametric models for arterial input functions (AIFs) that are compatible with single compartment models for dynamic contrast-enhanced MRI (DCE-MRI).
1 2 3 4  | aif.orton.exp(tt, AB, muB, AG, muG)
model.orton.exp(tt, aparams, kparams)
orton.exp.lm(tt, aif, guess=c(log(100),log(10),log(1),log(0.1)),
             nprint=0)
 | 
tt | 
 is a vector of acquisition times (in minutes) relative to injection of the contrast agent. Negative values should be used prior to the injection.  | 
AB,muB,AG,muG | 
 are parameters of the double exponential function that describe the AIF.  | 
aparams | 
 is the vector of parameters (A_B, μ_B, A_G, μ_G) associated with the AIF.  | 
kparams | 
 is the vector of parameters (v_p, K^{trans}, k_{ep}) associated with the “extended Kety model” for contrast agent concentration.  | 
aif | 
 is the vector of observed contrast agent concentrations (data) used to estimate the parametric model.  | 
guess | 
 Initial parameter values for the nonlinear optimization.  | 
nprint | 
 is an integer, that enables controlled printing of
iterates if it is positive.  In this case, estimates of   | 
aif.orton.exp displays the exponential AIF from Orton et
al. (2008) for a known set of AIF parameter values.
model.orton.exp displays the exponential AIF from Orton
et al. (2008) for a known set of AIF and compartmental model
parameter values.  orton.exp.lm estimates the AIF parameters,
using nonlinear optimization, using a vector of observed contrast
agent concentrations.
aif.orton.exp and model.orton.exp return the AIF
associated with the pre-specified parameter values.
orton.exp.lm returns a list structure with
AB | 
 The amplitude of the first exponential function.  | 
muB | 
 The decay rate of the first exponential function.  | 
AG | 
 The amplitude of the second exponential function.  | 
muG | 
 The decay rate of the second exponential function.  | 
info | 
 The success (or failure) code from the Levenburg-Marquardt
algorithm   | 
message | 
 The text message associated with the   | 
Brandon Whitcher bjw34032@users.sourceforge.net
Orton, M.R., Collins, D.J., Walker-Samuel, S., d'Arcy, J.A., Hawkes, D.J., Atkinson, D. and Leach, M.O. (2007) Bayesian estimation of pharmacokinetic parameters for DCE-MRI with a robust treatment of enhancement onset time, Physics in Medicine and Biology 52, 2393-2408.
Orton, M.R., d'Arcy, J.A., Walker-Samuel, S., Hawkes, D.J., Atkinson, D., Collins, D.J. and Leach, M.O. (2008) Computationally efficient vascular input function models for quantitative kinetic modelling using DCE-MRI, Physics in Medicine and Biology 53, 1225-1239.
dcemri.lm, extract.aif,
nls.lm
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16  | data("buckley")
## Generate AIF params using the orton.exp function from Buckley's AIF
xi <- seq(5, 300, by=5)
time <- buckley$time.min[xi]
aif <- buckley$input[xi]
aifparams <- orton.exp.lm(time, aif)
aifparams$D <- 1 
unlist(aifparams[1:4])
aoe <- aif.orton.exp(time, aifparams$AB, aifparams$muB, aifparams$AG,
                     aifparams$muG)
with(buckley, plot(time.min, input, type="l", lwd=2))
lines(time, aoe, lwd=2, col=2)
legend("right", c("Buckley's AIF", "Our approximation"), lty=1,
       lwd=2, col=1:2)
cbind(time, aif, aoe)[1:10,]
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.