Description Usage Arguments Details Value Author(s) References See Also Examples
Maximum-a-posteriori (MAP) estimation for single compartment models is performed using literature-based or user-specified arterial input functions.
1 2 3 4 5  | 
conc | 
 Matrix or array of concentration time series (last dimension must be time).  | 
time | 
 Time in minutes.  | 
img.mask | 
 Mask matrix or array. Voxels with   | 
model | 
 is a character string that identifies the type of compartmental model to be used. Acceptable models include: 
  | 
aif | 
 is a character string that identifies the parameters of the
type of arterial input function (AIF) used with the above model.
Acceptable values are:   | 
user | 
 Vector of AIF parameters. For Tofts and Kermode: a_1, m_1, a_2, m_2; for Orton et al.: A_b, μ_b, A_g, μ_g.  | 
ab.ktrans | 
 Mean and variance parameter for Gaussian prior on \log(K^{trans}).  | 
ab.kep | 
 Mean and variance parameter for Gaussian prior on \log(k_{ep}).  | 
ab.vp | 
 Hyper-prior parameters for the Beta prior on vp.  | 
ab.tauepsilon | 
 Hyper-prior parameters for observation error Gamma prior.  | 
maxit | 
 The maximum number of iterations for the optimization procedure.  | 
samples | 
 If   | 
multicore | 
 If   | 
verbose | 
 Logical variable (default =   | 
... | 
 Additional parameters to the function.  | 
Implements maximum a posteriori (MAP) estimation for the Bayesian model in Schmid et al. (2006).
Parameter estimates and their standard errors are provided for the
masked region of the multidimensional array.  The multi-dimensional
arrays are provided in nifti format.
They include:
ktrans | 
 Transfer rate from plasma to the extracellular, extravascular space (EES).  | 
kep | 
 Rate parameter for transport from the EES to plasma.  | 
ve | 
 Fractional occupancy by EES (the ratio between ktrans and kep).  | 
vp | 
 Fractional occupancy by plasma.  | 
sigma2 | 
 The residual sum-of-squares from the model fit.  | 
time | 
 Acquisition times (for plotting purposes).  | 
Note, not all parameters are available under all models choices.
Volker Schmid volkerschmid@users.sourceforge.net
Schmid, V., Whitcher, B., Padhani, A.R., Taylor, N.J. and Yang, G.-Z. (2006) Bayesian methods for pharmacokinetic models in dynamic contrast-enhanced magnetic resonance imaging, IEEE Transactions on Medical Imaging, 25 (12), 1627-1636.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28  | data("buckley")
xi <- seq(5, 300, by=5)
img <- array(t(breast$data)[,xi], c(13,1,1,60))
mask <- array(TRUE, dim(img)[1:3])
time <- buckley$time.min[xi]
## MAP estimation with extended Kety model and Fritz-Hansen default AIF
fit.map.vp <- dcemri.map(img, time, mask, aif="fritz.hansen")
## Nonlinear regression with extended Kety model and Fritz-Hansen default AIF
fit.lm.vp <- dcemri.lm(img, time, mask, aif="fritz.hansen")
plot(breast$ktrans, fit.map.vp$ktrans, xlim=c(0,1), ylim=c(0,1),
     xlab=expression(paste("True ", K^{trans})),
     ylab=expression(paste("Estimated ", K^{trans})))
points(breast$ktrans, fit.lm.vp$ktrans, pch=3)
abline(0, 1, lwd=2, col=2)
legend("bottomright", c("MAP Estimation (fritz.hansen)",
                        "Levenburg-Marquardt (fritz.hansen)"), pch=c(1,3))
## MAP estimation with Kety model and Fritz-Hansen default AIF
fit.map <- dcemri.map(img, time, mask, model="weinmann", aif="fritz.hansen")
## Nonlinear regression with Kety model and Fritz-Hansen default AIF
fit.lm <- dcemri.lm(img, time, mask, model="weinmann", aif="fritz.hansen")
cbind(breast$kep, fit.lm$kep[,,1], fit.lm.vp$kep[,,1], fit.map$kep[,,1],
      fit.map.vp$kep[,,1])
cbind(breast$ktrans, fit.lm$ktrans[,,1], fit.lm.vp$ktrans[,,1],
      fit.map$ktrans[,,1], fit.map.vp$ktrans[,,1])
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.