R/khb.R

Defines functions print.khb khb

Documented in khb print.khb

#' KHB
#' 
#' Compare two non-linear regression models using the KHB method
#' 
#' @param reduced The reduced model to compare (withought mediators variables). This 
#'   must be a logistic or probit regression model fit using the \code{glm} 
#'   command.
#' @param full The full model to compare (including mediators variables). This 
#'   must be a logistic or probit regression model fit using the \code{glm} 
#'   command.
#' @param corrected.se Logical. If \code{TRUE}, standard errors of the adjusted model
#'   are corrected to account for the uncertainty of the regressions on the mediators
#'   variables.
#' @param med.sandwich Logical. If \code{TRUE}, sandwich standard errors are
#'   used for the regressions relating mediators and key variables. If
#'   \code{NULL} (default), sandwich standard errors are used only if at least
#'   one of the mediator is a binary (or categorical) variable.
#' @param glm.sandwich Logical. If \code{TRUE}, sandwich standard errors are
#'   used for the glm models.
#' @param savefs Logical. If \code{TRUE}, the SUR model is saved in the result. 
#' @return a khb object which is a list with the following elements:\itemize{
#'    \item sum_conf a summary table of the confounding and rescaling effects.
#'    \item key a list of the confounding effect on each key variables (i.e. variable in the reduced model).
#'    \item reduced the reduced model.
#'    \item adjusted the adjusted model (with mediators residuals).
#'    \item full the full model.
#'    \item keyvar A character vector of the key variables (i.e. variable in the reduced model).
#'    \item mediators A character vector of the mediators (i.e. the variable in the full model
#'    that are not in the reduced one).
#'    }
#' @references Karlson KB, Holm A and Breen R (2012). Comparing Regression Coefficients 
#'   Between Same-sample Nested Models Using Logit and Probit: A New Method. 
#'   Sociological Methodology, 42(1), pp 286-313. 
#' @examples 
#' ## Example: transition to higher education in Northern Ireland
#' data(mvad, package="TraMineR")
#' ## Build a binary covariate, TRUE if went to higher education
#' HE <- rowSums(mvad[, 17:86]=="HE")>0
#' 
#' ## Our reduced models including Father unemployement (funemp)
#' ## and type of compulsory school (Grammar)
#' red <- glm(HE~funemp+Grammar, data=mvad, family=binomial("logit"))
#' ## In the full model, we add the results at the end of compulsory schooling
#' ## (gcse5eq).
#' full <- glm(HE~Grammar+funemp+gcse5eq, data=mvad, family=binomial("logit"))
#' ## Running the KHB method
#' k <- khb(red, full)
#' 
#' ## Printing the results for the funemp covariates only
#' print(k, keyvar="funemp")
#' ## Comparing the models
#' print(k, type="models")
#'
#' ## Several mediators
#' ## Here, we only have one covariate in the reduced model
#' red <- glm(HE~funemp, data=mvad, family=binomial("logit")) 
#' full <- glm(HE~Grammar+gcse5eq+funemp, data=mvad, family=binomial("logit"))
#' #' ## Running the KHB method
#' k <- khb(red, full)
#' 
#' ## Printing the results and disentangle the effect of each mediator
#' print(k, disentangle=TRUE)
#' ## Comparing the models
#' print(k, type="models")


khb <- function(reduced, full, corrected.se=FALSE, med.sandwich=NULL, glm.sandwich=FALSE,  savefs=FALSE){
	## Variables in reduced model
	keyvar <- attr(reduced$terms, "term.labels")
	## Variables in full model
	vf <- attr(full$terms, "term.labels")
	## Define mediators as variable present only in full model
	mediators <- vf[!(vf %in% keyvar)]
	message(" [>] Mediators: ", paste(mediators, collapse=", "))
	datamm <- model.matrix(full)
	if(inherits(full, "clm")){
		datamm <- datamm$X
	}
	datammdf <- as.data.frame(datamm)
	## Some mediators may have several z variable (ie factors)
	getVarList <- function(kv){
		## position of variables in term assign list
		ikv <- match(kv, vf)
		kvList <- list()
		for(i in seq_along(kv)){
			kvList[[kv[i]]] <- colnames(datamm)[attr(datamm, "assign") == ikv[i]]
		}
		return(kvList)
	}
	keyvarList <- getVarList(keyvar)
	mediatorList <- getVarList(mediators)
	allkeyvar <- unlist(keyvarList, use.names=F) ##colnames(datamm)[attr(datamm, "assign") %in% ikeyvar]
	allmediators <- unlist(mediatorList, use.names=F) ##colnames(datamm)[attr(datamm, "assign") %in% imediators]
	nz <- length(allmediators)
	## Choosing covariance estimator
	if(is.null(med.sandwich)){
		med.sandwich <- any(sapply(datammdf[, allmediators], function(x){return(length(unique(x))==2)}))
	}
	stata.sandwich <- function(...){
		return(sandwich(..., adjust=TRUE))
	}
	vcovfunc <- if(med.sandwich){stata.sandwich} else{ vcov}
	vcovglm <- if(glm.sandwich){stata.sandwich} else{vcov}
	
	## Return object
	ret <- list()
	## Storing summary informations.
	ff <- list()
	for(z in allmediators){
		ff[[z]] <- as.formula(paste0("`",z,"`~`",paste(c(allkeyvar), collapse="`+`"),"`"))
	}
	##getAdjustedModel <- function(reduced){
		## Try to get the same as stata
	fitsur <- systemfit(ff, data=datammdf, method="SUR", control=systemfit.control(maxiter = 2, methodResidCov = "noDfCor"))
	## Compute residuals 
	zresid <- resid(fitsur)
	names(zresid) <- paste("KHB__KHB__", names(zresid), sep="")
	## Updating the reduced model to include the 
	adjusted <- update(reduced, formula = as.formula(paste0(".~.+", paste0("`KHB__KHB__", allmediators,"`", collapse=" + "))), data = data.frame(model.frame(reduced), zresid))
	
	##	return(adjusted)
	##}
	##adjusted <- getAdjustedModel(reduced)
	## Needed for statistical signif
	## sgrzr <- summary(grzr)
	## sgf <- summary(gf)
	zcovmat <- matrix(0, ncol=2*nz, nrow=2*nz)
	zcovmat[1:nz, 1:nz] <- vcovglm(full)[allmediators, allmediators]
	if(savefs){
		estimation <- list()
	}
	adjustedCoef  <- coeftest(adjusted, vcov.=vcovglm)
	fullCoef <- coeftest(full, vcov.=vcovglm)
	reducedCoef <- coef(reduced)
	ckgr <- coef(reduced)[allkeyvar]
	ckgrzr <- adjustedCoef[allkeyvar, 1]
	ckgf <- fullCoef[allkeyvar, 1]
	sum_conf <- data.frame(Ratio=ckgrzr/ckgf, Percentage=100*(ckgrzr-ckgf)/ckgrzr, 
							Rescaling=ckgrzr/ckgr)
	rownames(sum_conf) <- allkeyvar
	
	for(kk in allkeyvar){
		ret[[kk]] <- list()
		medSUR <- match(paste(allmediators, kk, sep="_"), names(coef(fitsur)))
		zcoef <- coef(fitsur)[medSUR]
		names(zcoef) <- allmediators
		zcovmat[nz+1:nz, nz+1:nz] <- vcovfunc(fitsur)[medSUR, medSUR]
		a <- c(zcoef, fullCoef[allmediators, 1])
		sdconf <-  sqrt(t(a) %*% zcovmat %*% a)
		if(savefs){
			estimation[[kk]] <- list(a=a, sigma=zcovmat, se=sdconf) 
		}

		res <- matrix(0, ncol=4, nrow=3)
		colnames(res) <- c("Estimate", "Std. Error", "z value", "Pr(>|z|)")
		rownames(res) <- c("Reduced", "Full", "Diff")
		
		res[1, ] <- adjustedCoef[kk, ]
		if(corrected.se){
			SIGMA <- matrix(0, nrow=2*nz+1, ncol=2*nz+1)
			intvar <- c(kk, allmediators)
			aa <- c(zcoef, fullCoef[intvar, 1])
			SIGMA[1:(1+nz), 1:(1+nz)] <- vcovglm(full)[intvar, intvar]
			SIGMA[nz+1+1:nz,nz+1+1:nz] <- zcovmat[nz+1:nz, nz+1:nz]
			res[1, 2] <- sqrt(t(aa) %*% SIGMA %*% aa)
			res[1, 3] <- res[1, 1]/res[1, 2]
			res[1,4] <- 2 * pnorm(-abs(res[1, 3]))
			
		}
		res[2, ] <- fullCoef[kk, ]
		res[3, ] <- res[1,]-res[2, ]
		res[3, 2] <- sdconf
		res[3, 3] <- res[3, 1]/sdconf
		res[3,4] <- 2 * pnorm(-abs(res[3, 3]))
		ret[[kk]]$table <- res
	
		res <- matrix(0, ncol=6, nrow=1+nz)
		colnames(res) <- c("% diff", "% effect", "Estimate", "Std. Error", "z value", "Pr(>|z|)")
		rownames(res) <- c("Grand Indirect", allmediators)
		res["Grand Indirect", ] <- c(100, 100*sum_conf[kk, "Percentage"], ret[[kk]]$table[3, 1:4])
		for(zz in allmediators){
			izz <- match(zz, allmediators)
			res[zz, 3] <- fullCoef[zz, 1]*zcoef[zz]
			izzpos <- c(izz, nz+izz)
			res[zz, 4] <- sqrt(t(a[izzpos]) %*% zcovmat[izzpos,izzpos] %*% a[izzpos])
			res[zz, 5] <- res[zz, 3]/res[zz, 4]
			res[zz, 6] <- 2 * pnorm(-abs(res[zz, 5]))
			res[zz, 1] <- 100*res[zz, 3]/ res[1, 3]
			res[zz, 2] <- 100*res[zz, 3]/ ret[[kk]]$table[1,1]
		}
		ret[[kk]]$detail <- res
		##ret[[kk]]$ape["Diff"] <- ret$ape["Reduced"] - ret$ape["Full"]
	}
	finalobj <-list(sum_conf=sum_conf, key=ret, reduced=reduced, adjusted=adjusted, full=full,
		keyvar=keyvarList, mediators=mediatorList)
	if(savefs){
		estimation$fitsur <- fitsur
		finalobj$estimation <- estimation
	}
	class(finalobj) <- "khb"
	return(finalobj)

}

#' @rdname khb
#' @param x A khb object
#' @param type Character. The type of information printed (see details).
#' @param keyvar A character vector or \code{NULL} (default). The list of 
#'   variables of interest (for which the change between models are displayed). 
#'   If \code{NULL} (default), all variables of the reduced models are considered as key 
#'   variables.
#' @param disentangle Logical. If \code{FALSE} (default), the contribution of each mediator is not printed.
#' @param ... Arguments passed to other methods.
#' @method print khb
print.khb <- function(x, type="summary", keyvar=NULL, disentangle=FALSE, ...){
	if(type=="models"){
		args <- c(list(Reduced=x$reduced, Adjusted=x$adjusted, Full=x$full), list(...))
		print(do.call(regTable, args), quote=FALSE)
		return(invisible())
	}
	
	cat("KHB method\n")
	cat("Model type:",  class(x$reduced), ifelse(inherits(x$reduced, "glm"),paste0("(", family(x$reduced)$link,")"), "") , "\n")
	varList <- function(vl){
		ret <- character(length(vl))
		names(ret) <- names(vl)
		for(nn in names(vl)){
			vlnn <- vl[[nn]]
			if(length(vlnn)==1 && vlnn==nn){
				ret[nn] <- nn
			}else{
				ret[nn] <- paste0(nn, " (", paste(vlnn, collapse=", "), ")")
			}
		}
		return(paste(ret, collapse=", "))
	}
	cat("Variables of interest: ", varList(x$keyvar), fill=TRUE, sep="")
	cat("Z variables (mediators): ", varList(x$mediators), fill=TRUE, sep="")
	cat("\nSummary of confounding\n")
	printCoefmat(x$sum_conf)
	#cat("\n")
	
	if(is.null(keyvar)){
		keyvar <- names(x$key)
	}else if(length(keyvar)==1 && keyvar==FALSE){
		return(invisible())
	} else{
		cond <- keyvar %in% names(x$key)
		cond2 <- keyvar %in% names(x$keyvar)
		if(any((!cond) & (!cond2))){
			stop(" [!] The following keyvar were not found: ", paste(keyvar[(!cond) & (!cond2)], collapse=", "))
		}
		keyvar <- c(keyvar[cond], unlist(x$keyvar[keyvar[cond2&(!cond)]]))
	}
	for(k in keyvar){
		cat(rep("--", 22),"\n", sep="-")
		cat(k,":\n")
		printCoefmat(x$key[[k]]$table, cs.ind=1:2, tst.ind=3, signif.legend=FALSE)
		if(nrow(x$key[[k]]$detail)>2 && disentangle){
			cat("\n\nDecomposition of the difference:\n")
			printCoefmat(x$key[[k]]$detail[-1,], cs.ind=3:4, tst.ind=5, zap.ind=1:2)
		}
	}
	return(invisible())
}

Try the khb package in your browser

Any scripts or data that you put into this service are public.

khb documentation built on May 2, 2019, 5:20 p.m.