3.1.example.data | R Documentation |
Example data intended for use with examples in loa
.
lat.lon.meuse
roadmap.meuse
lat.lon.meuse
is a modified form of the meuse
data set
taken from the sp
package. Here, coordinate (x,y) elements
have been transformed to latitudes and longtiudes and the object
class has been converted from SpatialPointsDataFrame
to
data.frame
.
roadmap.meuse
is a previously downloaded map intended for
use with off-line plot examples using lat.lon.meuse
.
lat.lon.meuse
was generated using method based on mzn
object
production in https://github.com/etes/Geoprocessing/blob/master/heatmap.R.
library(sp); library(gstat); library(rgdal)
data(meuse)
coordinates(meuse) =~ x + y
proj4string(meuse) = CRS("+init=epsg:28992")
meuse1 = spTransform(meuse, CRS("+init=epsg:4326"))
meuse2=as.data.frame(meuse1)
mzn=meuse2[,c(14,13,4)]
names(mzn)<-c("Latitude","Longitude","zinc")
roadmap.meuse
was generated using:
RgoogleMapsPlot(zinc~latitude*longitude, data=lat.lon.meuse, size=c(450,500), maptype="roadmap")
roadmap.meuse <- loaMapArg()
For meuse
:
M G J Rikken and R P G Van Rijn, 1993. Soil pollution with heavy metals - an inquiry into spatial variation, cost of mapping and the risk evaluation of copper, cadmium, lead and zinc in the floodplains of the Meuse west of Stein, the Netherlands. Doctoraalveldwerkverslag, Dept. of Physical Geography, Utrecht University
P.A. Burrough, R.A. McDonnell, 1998. Principles of Geographical Information Systems. Oxford University Press.
Stichting voor Bodemkartering (Stiboka), 1970. Bodemkaart van Nederland : Blad 59 Peer, Blad 60 West en 60 Oost Sittard: schaal 1 : 50 000. Wageningen, Stiboka.
For sp
:
Roger S. Bivand, Edzer J. Pebesma, Virgilio Gomez-Rubio, 2008. Applied spatial data analysis with R. Springer, NY. http://www.asdar-book.org/
Pebesma, E.J., R.S. Bivand, 2005. Classes and methods for spatial data in R. R News 5 (2), http://cran.r-project.org/doc/Rnews/.
## data structure of lat.lon.meuse
head(lat.lon.meuse)
## Use a subsample of lat.lon.meuse
temp <- lat.lon.meuse[sample(1:155, 15),]
## various loaPlot examples
## using lat.lon.meuse
loaPlot(~longitude*latitude, data=temp)
loaPlot(cadmium~longitude*latitude, data=temp)
loaPlot(cadmium~longitude*latitude, col.regions=c("green", "red"),
data=temp)
loaPlot(cadmium*50+copper*10+lead*2+zinc~longitude*latitude, panel.zcases = TRUE,
col.regions=c("green", "red"),
key.z.main="Concentrations", data=temp)
## (off line) GoogleMap example
## using lat.lon.meuse and roadmap.meuse
GoogleMap(zinc~latitude*longitude, data=temp,
map=roadmap.meuse, col.regions=c("grey", "darkred"))
# Note 1:
# With loaPlot and GoogleMap, note latitude, longitude axes
# assignments:
# loaPlot plots z ~ x * y | cond.
# GoogleMap plots z ~ lat * lon | cond (z ~ y * x | cond)
# Note 2:
# Here, the map argument is supplied so example works off-line.
# If not supplied and R is on-line, GoogleMap will (try to) get map
# from the Google API. Look at:
## Not run:
GoogleMap(zinc~latitude*longitude, data=lat.lon.meuse,
col.regions=c("grey", "darkred"))
## End(Not run)
# (The map will appear slightly different, because non-default
# size and maptype settings were used to make roadmap.meuse. See above.)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.