Description Usage Arguments Details Value Author(s) References See Also Examples
iterations
excises the relevant portion of the output file, converting
the text to parameter and gradient estimates.
1 | iterations(x, ...)
|
x |
character |
... |
ignored |
The default result has intermediate dimensions as a compromise between very wide and very tall.
data frame indicating parameter estimates and gradients by iteration
Tim Bergsma
http://metrumrg.googlecode.com
cov2cor
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 | lst <- c(
'0ERROR SUBROUTINE CALLED WITH EVERY EVENT RECORD.',
'1',
' ',
' ',
' #METH: First Order Conditional Estimation with Interaction',
' MONITORING OF SEARCH:',
'',
'0ITERATION NO.: 0 OBJECTIVE VALUE: 3140.31595361523 NO. OF FUNC. EVALS.:10',
' CUMULATIVE NO. OF FUNC. EVALS.: 10',
' PARAMETER: 1.0E-1 1.0E-1 1.0E-1 1.0E-1 1.0E-1 1.0E-1 1.0E-1 1.0E-1 1.0E-1 1.0E-1',
' 1.0E-1',
' GRADIENT: 3.9E+0 -4.0E+2 7.1E+2 1.8E+1 -1.6E+2 6.9E-1 -8.4E+0 -7.5E+1 -2.1E+2 -6.6E+2',
' -3.9E+1',
'0ITERATION NO.: 5 OBJECTIVE VALUE: 2506.10546953541 NO. OF FUNC. EVALS.:11',
' CUMULATIVE NO. OF FUNC. EVALS.: 65',
' PARAMETER: 6.2E-2 1.1E+0 -1.0E+0 -1.1E+0 4.2E-1 1.2E-1 2.7E-1 7.1E-1 3.0E-1 1.3E-1',
' -1.2E-1',
' GRADIENT: 8.6E+0 5.1E+1 2.9E+1 -3.5E+1 1.2E+1 2.2E+0 -2.5E+0 1.9E+1 -1.1E+1 -4.1E+0',
' -1.3E+2',
'0ITERATION NO.: 10 OBJECTIVE VALUE: 2494.92785884531 NO. OF FUNC. EVALS.:12',
' CUMULATIVE NO. OF FUNC. EVALS.: 123',
' PARAMETER: -1.2E-1 9.9E-1 -1.1E+0 -1.2E+0 1.9E-1 1.6E-1 1.7E+0 5.0E-1 3.3E-1 1.2E-1',
' -9.8E-2',
' GRADIENT: 1.2E+1 3.1E+1 -3.1E+1 -1.5E+1 1.9E-1 5.3E+0 3.2E+0 4.0E-1 -3.6E+0 -3.3E+0',
' -8.1E+1',
'0ITERATION NO.: 15 OBJECTIVE VALUE: 2487.99745856896 NO. OF FUNC. EVALS.:11',
' CUMULATIVE NO. OF FUNC. EVALS.: 178',
' PARAMETER: -9.0E-2 9.8E-1 -1.0E+0 -1.0E+0 1.8E-1 1.0E-1 1.3E+0 4.9E-1 2.8E-1 1.8E-1',
' -4.7E-2',
' GRADIENT: -5.0E-1 2.2E-1 -1.7E+0 7.8E-1 6.4E-1 -1.3E-1 -1.1E-1 1.7E-1 1.7E-1 1.4E+0',
' 2.8E-1',
'0ITERATION NO.: 20 OBJECTIVE VALUE: 2487.98367110010 NO. OF FUNC. EVALS.:21',
' CUMULATIVE NO. OF FUNC. EVALS.: 246',
' PARAMETER: -8.8E-2 9.8E-1 -1.0E+0 -1.0E+0 1.7E-1 1.0E-1 1.3E+0 4.9E-1 2.8E-1 1.7E-1',
' -4.7E-2',
' GRADIENT: -5.8E-1 -1.1E+0 -4.6E+0 -4.7E-1 -2.2E-1 -1.2E-1 -2.9E-1 4.8E-2 1.5E-1 -5.1E-1',
' -1.3E-1',
'0ITERATION NO.: 25 OBJECTIVE VALUE: 2487.88855559751 NO. OF FUNC. EVALS.:16',
' CUMULATIVE NO. OF FUNC. EVALS.: 340',
' PARAMETER: -8.8E-2 1.0E+0 -9.9E-1 -1.0E+0 1.7E-1 9.7E-2 1.4E+0 4.8E-1 2.7E-1 1.8E-1',
' -4.6E-2',
' GRADIENT: -9.4E-3 8.1E-3 4.5E-2 -1.9E-2 -7.8E-4 -1.0E-3 -7.2E-4 3.5E-3 -2.6E-3 1.1E-2',
' 9.0E-3',
' Elapsed estimation time in seconds: 3.11',
' ',
' #TERM:',
'0MINIMIZATION SUCCESSFUL',
' NO. OF FUNCTION EVALUATIONS USED: 340',
' NO. OF SIG. DIGITS IN FINAL EST.: 3.2',
'',
' ETABAR IS THE ARITHMETIC MEAN OF THE ETA-ESTIMATES,',
' AND THE P-VALUE IS GIVEN FOR THE NULL HYPOTHESIS THAT THE TRUE MEAN IS 0.',
'',
' ETABAR: 2.3E-3 8.5E-4 6.8E-4',
' SE: 6.8E-2 4.6E-2 4.7E-2',
'',
' P VAL.: 9.7E-1 9.8E-1 9.8E-1',
' ',
' ETAshrink(%): 7.3E-1 1.6E+1 6.5E+0',
' EPSshrink(%): 8.8E+0',
' ',
' #TERE:',
' Elapsed covariance time in seconds: 4.27',
'1'
)
iterations <- iterations(lst)
iterations
it.dat <- melt(iterations,measure.var=names(iterations)[contains('X',names(iterations))])
xyplot(value~iteration|variable,it.dat[it.dat$course=='parameter',],
type='l',ylab='scaled parameter',as.table=TRUE,scales=list(y=list(relation='free')))
xyplot(value~iteration|variable,it.dat[it.dat$course=='gradient',] ,
type='l',ylab='gradient',as.table=TRUE,scales=list(y=list(relation='free')))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.