R/Lyapunov.R

Defines functions estimate.maxLyapunov plot.maxLyapunov divergence.maxLyapunov divergence embeddingDims.maxLyapunov divTime.maxLyapunov divTime maxLyapunov

Documented in divergence divergence.maxLyapunov divTime divTime.maxLyapunov embeddingDims.maxLyapunov estimate.maxLyapunov maxLyapunov plot.maxLyapunov

#' Maximum lyapunov exponent
#' @description
#' Functions for estimating the maximal Lyapunov exponent of a dynamical system
#'  from 1-dimensional time series using Takens' vectors.
#' @details It is a well-known fact that close trajectories diverge 
#' exponentially fast in a chaotic system. The averaged exponent that determines 
#' the divergence rate is called the Lyapunov exponent (usually denoted with 
#' \eqn{\lambda}{lambda}). If \eqn{\delta(0)}{delta(0)} is the distance between 
#' two Takens' vectors in the embedding.dim-dimensional space, we expect that 
#' the distance after a time \eqn{t} between the two trajectories arising 
#' from this two vectors fulfills:
#' \deqn{\delta (n) \sim \delta (0)\cdot exp(\lambda \cdot t)}{\delta (n) is.approximately \delta (0) exp(\lambda *t).}
#' The lyapunov exponent is estimated using the slope obtained by performing a 
#' linear regression of 
#' \eqn{S(t)=\lambda \cdot t \sim log(\delta (t)/\delta (0))}{S(t)=\lambda *t is.approximately log(\delta (t)/\delta (0))} 
#' on \eqn{t}. \eqn{S(t)} will be estimated by averaging the divergence of 
#' several reference points.
#' 
#' The user should plot \eqn{S(t) Vs t} when looking for the maximal lyapunov 
#' exponent and, if for some temporal range \eqn{S(t)} shows a linear 
#' behaviour, its slope is an estimate of the maximal Lyapunov exponent per 
#' unit of time. The estimate routine allows the user to get always an 
#' estimate of the maximal Lyapunov exponent, but the user must check that 
#' there is a linear region in the \eqn{S(t) Vs t}. If such a region does 
#' not exist, the estimation should be discarded. The computations should be 
#' performed for several embedding dimensions in order to check that the 
#' Lyapunov exponent does not depend on the embedding dimension.
#' @param time.series The original time series from which the maximal Lyapunov 
#' exponent will be estimated.
#' @param min.embedding.dim Integer denoting the minimum dimension in which we 
#' shall embed the time.series (see \link{buildTakens}). 
#' @param max.embedding.dim Integer denoting the maximum dimension in which we 
#' shall embed the time.series (see \link{buildTakens}).Thus,
#' we shall estimate the Lyapunov exponent between \emph{min.embedding.dim} 
#' and \emph{max.embedding.dim}.
#' @param time.lag Integer denoting the number of time steps that will be use 
#' to construct the Takens' vectors (see \link{buildTakens}).
#' @param radius Maximum distance in which will look for nearby trajectories.
#' @param theiler.window Integer denoting the Theiler window:  Two Takens' 
#' vectors must be separated by more than \emph{theiler.window} time steps in 
#' order to be considered neighbours. By using a Theiler window, we exclude 
#' temporally correlated vectors from our estimations. 
#' @param min.neighs Minimum number of neighbours that a Takens' vector must 
#' have to be considered a reference point.
#' @param min.ref.points Number of reference points that the routine will try 
#' to use. The routine stops when it finds \emph{min.ref.points} reference 
#' points, saving computation time.
#' @param max.time.steps Integer denoting the number of time steps marking the 
#' end of the linear region.
#' @param number.boxes Number of boxes that will be used in the box assisted 
#' algorithm (see \link{neighbourSearch}).
#' @param sampling.period Sampling period of the time series. When dealing 
#' with a discrete system, the \emph{sampling.period} should be set to 1.
#' @param do.plot Logical value. If TRUE (default value), a plot of \eqn{S(t)} 
#' Vs  \eqn{t} is shown.
#' @param ... Additional plotting parameters. 
#' @return A list with three components named  \eqn{time} and \eqn{s.function}.
#' \eqn{time} is a vector containing the temporal interval where the system 
#' evolves. It ranges from 0 to 
#' \emph{\eqn{max.time.steps \cdot sampling.period}{max.time.steps * sampling.period}}.
#' \eqn{s.function} is a matrix containing the 
#' values of the \eqn{S(t)} for each t in the time vector(the columns) and each 
#' embedding dimension (the rows).
#' @references  
#' Eckmann, Jean-Pierre and Kamphorst, S Oliffson and Ruelle, David and 
#' Ciliberto, S and others. Liapunov exponents from time series.
#' Physical Review A, 34-6, 4971--4979, (1986).
#' 
#' Rosenstein, Michael T and Collins, James J and De Luca, Carlo J.A practical 
#' method for calculating largest Lyapunov exponents from small data sets.
#' Physica D: Nonlinear Phenomena, 65-1, 117--134, (1993).
#' @examples \dontrun{
#' ## Henon System
#' h=henon(n.sample=  5000,n.transient= 100, a = 1.4, b = 0.3, 
#'         start = c(0.63954883, 0.04772637), do.plot = FALSE) 
#' my.ts=h$x 
#' ml=maxLyapunov(time.series=my.ts,
#'                min.embedding.dim=2,
#'                max.embedding.dim=5,
#'                time.lag=1,
#'                radius=0.001,theiler.window=4,
#'                min.neighs=2,min.ref.points=500,
#'                max.time.steps=40,do.plot=FALSE)
#' plot(ml)
#' ml.estimation = estimate(ml,regression.range = c(0,15),
#'                          use.embeddings=4:5,
#'                          do.plot = TRUE)
#' # The max Lyapunov exponent of the Henon system is 0.41
#' cat("expected: ",0.41," calculated: ",ml.estimation,"\n")
#' 
#' ## Rossler system
#' r=rossler(a=0.15,b=0.2,w=10,start=c(0,0,0), time=seq(0,1000,0.1), 
#'           do.plot=FALSE)
#' my.ts=r$x
#' use.cols = c("#999999","#E69F00","#56B4E9")
#' ml=maxLyapunov(time.series=my.ts,min.embedding.dim=5,max.embedding.dim = 7,
#'                time.lag=12,radius=0.1,theiler.window=50,
#'                min.neighs=5,min.ref.points=length(r),
#'                max.time.steps=300,number.boxes=NULL,
#'                sampling.period=0.1,do.plot=TRUE,
#'                col=use.cols)
#' #  The max Lyapunov exponent of the Rossler system is 0.09
#' ml.est=estimate(ml,col=use.cols,do.plot=T,
#'                 fit.lty=1,
#'                 fit.lwd=5)
#' cat("expected: ",0.090," calculated: ",ml.est,"\n")
#' }
#' @author Constantino A. Garcia
#' @rdname maxLyapunov
#' @export maxLyapunov
#' @exportClass maxLyapunov
#' @useDynLib nonlinearTseries
maxLyapunov = function(time.series,
                       min.embedding.dim = 2,
                       max.embedding.dim = min.embedding.dim,
                       time.lag = 1, radius, theiler.window = 1,
                       min.neighs = 5, min.ref.points = 500, 
                       max.time.steps = 10, number.boxes = NULL,
                       sampling.period = 1, do.plot = TRUE,
                       ...) {
  
  if (is.null(number.boxes)) {
    number.boxes = estimateNumberBoxes(time.series, radius)
  }
  
  #  s.function = matrix(0, ncol = (max.time.steps+1), nrow = n.embeddings)
  s.function = .Call('_nonlinearTseries_lyapunov_exponent',
                     PACKAGE = 'nonlinearTseries',
                     time.series, min.embedding.dim, max.embedding.dim,
                     time.lag, radius, theiler.window, min.neighs,
                     min.ref.points, max.time.steps, number.boxes)
  
  dimnames(s.function) = list(min.embedding.dim:max.embedding.dim,
                              0:max.time.steps)
  time = (0:max.time.steps) * sampling.period
  max.lyapunov.structure = list(
    time = time,
    s.function = s.function,
    embedding.dims = min.embedding.dim:max.embedding.dim
  )
  
  class(max.lyapunov.structure) = "maxLyapunov"
  id = deparse(substitute(time.series))
  attr(max.lyapunov.structure,"id") = id
  attr(max.lyapunov.structure,"time.lag") = time.lag
  attr(max.lyapunov.structure,"theiler.window") = theiler.window  
  attr(max.lyapunov.structure,"min.neighs") = min.neighs
  attr(max.lyapunov.structure,"min.ref.points") = min.ref.points
  
  if (do.plot) {
    tryCatch(
      plot(max.lyapunov.structure,...), 
      error = function(e) {
        warning("Error while trying to plot the Lyapunov object.")
      })
  }
  max.lyapunov.structure
}

#' Returns the time in which the divergence of close trajectories was computed 
#' in order to estimate the maximum Lyapunov exponent.
#' @param x A \emph{maxLyapunov} object.
#' @return A numeric vector representing the time in which the divergence of
#' close trajectories was computed.
#' @seealso \code{\link{maxLyapunov}}
#' @export divTime
divTime = function(x) {
  UseMethod("divTime")
}

#' @return The \emph{divTime} function returns the 
#' time in which the divergence of close trajectories was computed.
#' @rdname maxLyapunov
#' @export
divTime.maxLyapunov = function(x) {
  x$time
}

#' @return The \emph{embeddingDims} function returns the 
#' embeddings in which the divergence of close trajectories was computed
#' @rdname maxLyapunov
#' @export
embeddingDims.maxLyapunov = function(x) {
  embeddingDims.default(x)
}

#' Returns the rate of divergence of close trajectories needed for the maximum 
#' Lyapunov exponent estimation.
#' @param x A \emph{maxLyapunov} object.
#' @return A numeric matrix representing the time in which the divergence of
#' close trajectories was computed. Each row represents an embedding dimension
#' whereas that each column represents an specific moment of time.
#' @seealso \code{\link{maxLyapunov}}
#' @export divergence
divergence = function(x) {
  UseMethod("divergence")
}

#' @return The \emph{divergence} function returns the 
#' rate of divergence of close trajectories needed for the maximum Lyapunov
#' exponent estimation.
#' @rdname maxLyapunov
#' @export
divergence.maxLyapunov = function(x) {
  x$s.function
}

#' @rdname maxLyapunov
#' @param main A title for the plot.
#' @param xlab A title for the x axis.
#' @param ylab A title for the y axis.
#' @param type Type of plot (see \code{\link[graphics]{plot}}).
#' @param col Vector of colors for each of the dimensions of the plot.
#' @param pch Vector of symbols for each of the dimensions of the plot.
#' @param add.legend add a legend to the plot?
#' @export
plot.maxLyapunov = function(x, main = "Estimating maximal Lyapunov exponent", 
                            xlab = "time t", ylab = "S(t)", type = "p", 
                            col = NULL, pch = NULL, add.legend = T, ...) {
  embeddings = x$embedding.dims
  n.embeddings = length(embeddings)
  # obtain default parameter vectors if not specified
  col = vectorizePar(col,n.embeddings)
  pch = vectorizePar(pch,n.embeddings)
  for (i in 1:n.embeddings) {
    if (i != 1) {
      lines(x$time[-1], x$s.function[as.character(embeddings[[i]]), -1], 
            type = type, col = col[[i]], pch = pch[[i]], ...)
    } else {
      # first time: use plot
      plot(x$time[-1], x$s.function[as.character(embeddings[[i]]), -1], 
           xlab = xlab, ylab = ylab, main = main, type = type, col = col[[1]], 
           pch = pch[[1]], ...)    
    }
  }
  if (add.legend) {
    legend("bottomright",
           col = col[1:n.embeddings],
           pch = pch[1:n.embeddings], lty = rep(1, n.embeddings), 
           lwd = rep(2.5, n.embeddings), bty = "n", 
           legend = embeddings, title = "Embedding dimension"
      )
  }
}

#' @return In order to obtain an estimation of the Lyapunov exponent the user 
#' can use the \emph{estimate} function. The  \eqn{estimate} function allows 
#' the user to obtain an estimation of the maximal Lyapunov exponent by 
#' averaging the slopes of the embedding dimensions specified in the 
#' \emph{use.embeddings} parameter. The slopes are determined by performing a 
#' linear regression over the radius' range specified in \emph{regression.range}
#' @param ylim Numeric vector of length 2, giving the y coordinates range.
#' @param x A \emph{maxLyapunov} object.
#' @param regression.range Vector with 2 components denoting the range where 
#' the function will perform linear regression.
#' @param use.embeddings A numeric vector specifying which embedding dimensions 
#' should the \emph{estimate} function use to compute the Lyapunov exponent.
#' @param fit.col A vector of colors to plot the regression lines.
#' @param fit.lty The type of line to plot the regression lines.
#' @param fit.lwd The width of the line for the regression lines.
#' @rdname maxLyapunov
#' @export
estimate.maxLyapunov = function(x, regression.range = NULL, 
                                do.plot = FALSE, use.embeddings = NULL, 
                                main = "Estimating maximal Lyapunov exponent", 
                                xlab = "time t", ylab = "S(t)", type = "p", 
                                col = NULL,  pch = NULL, ylim = NULL,
                                fit.col = NULL, fit.lty = 2, 
                                fit.lwd = 2, add.legend = T, ...) {
  if (is.null(regression.range)) {
    # the first position is always 0
    min.time = x$time[[2]] 
    max.time = tail(x$time, 1)
  } else {
    min.time = regression.range[[1]]
    max.time = regression.range[[2]]
  }
  if (!is.null(use.embeddings)) {
    s.function = x$s.function[as.character(use.embeddings),]
  } else {
    use.embeddings = x$embedding.dims
    s.function = x$s.function
  }
  
  indx = which(x$time >= min.time & x$time <= max.time )
  x.values = x$time[indx]
  lyapunov.estimate = c()
  n.embeddings = length(use.embeddings)
  # color and symbols for the plots if needed
  if (do.plot) {
    # obtain vector of graphical parameters if not specified
    col = vectorizePar(col,n.embeddings)
    pch = vectorizePar(pch,n.embeddings)
    fit.col = vectorizePar(fit.col,n.embeddings,col)  
  }
  for (i in 1:n.embeddings) {
    current.embedding = use.embeddings[[i]]
    y.values = s.function[as.character(current.embedding),indx]
    fit = lm(y.values ~ x.values)
    lyapunov.estimate = c(lyapunov.estimate,fit$coefficients[[2]])
    if (do.plot) {
      if (i != 1) {
        lines(x$time, s.function[as.character(current.embedding), ], 
              type = type, col = col[[i]], pch = pch[[i]], ...)
      } else {
        if (is.null(ylim)) {
          ylim = range(s.function)
        }
        plot(x$time, s.function[as.character(current.embedding), ], 
             xlab = xlab, ylab = ylab, main = main, type = type, col = col[[1]], 
             pch = pch[[1]], ylim = ylim, ...)  
      }
      lines(x.values, fit$fitted.values, col = fit.col[[i]], 
            lty = fit.lty, lwd = fit.lwd)
    }
  }
  lyapunov.estimate = mean(lyapunov.estimate)
  if (do.plot && add.legend) {
    legend("bottomright", col = col[1:n.embeddings],
           pch = pch[1:n.embeddings], lty = rep(1, n.embeddings), bty = "n", 
           lwd = rep(2.5, n.embeddings), legend = use.embeddings, 
           title = "Embedding dimension")
  }
  lyapunov.estimate
}

Try the nonlinearTseries package in your browser

Any scripts or data that you put into this service are public.

nonlinearTseries documentation built on May 2, 2019, 5:47 p.m.