R/RQA.R

Defines functions getHistograms calculateDiagonalParameters calculateVerticalParameters neighbourListToCsparseNeighbourMatrix neighbourList2SparseMatrix neighs2numericType recurrencePlotFromMatrix recurrencePlot plot.rqa rqa

Documented in recurrencePlot rqa

#' Recurrence Quantification Analysis (RQA)
#' @description
#' The Recurrence Quantification Analysis (RQA) is an advanced technique for the 
#' nonlinear analysis that allows to quantify the number and duration of the 
#' recurrences in the phase space. 
#' @param time.series The original time series from which the phase-space 
#' reconstruction is performed.
#' @param embedding.dim Integer denoting the dimension in which we shall 
#' embed the \emph{time.series}.
#' @param time.lag Integer denoting the number of time steps that will be use 
#' to construct the  Takens' vectors.
#' @param takens Instead of specifying the \emph{time.series}, 
#' the \emph{embedding.dim} and the \emph{time.lag}, the user may specify 
#' directly the Takens' vectors. 
#' @param radius Maximum distance between two phase-space points to be 
#' considered a recurrence.
#' @param lmin Minimal length of a diagonal line to be considered in the RQA. 
#' Default \emph{lmin} = 2.
#' @param vmin Minimal length of a vertical line to be considered in the RQA. 
#' Default \emph{vmin} = 2.
#' @param save.RM Logical value. If TRUE, the recurrence matrix is stored as a 
#' sparse matrix. Note that computing the recurrences in matrix form can be 
#' computationally expensive.
#' @param do.plot Logical. If TRUE, the recurrence plot is shown. However, 
#' plotting the recurrence matrix is computationally expensive. Use with 
#' caution.
#' @param ... Additional plotting parameters.
#' @param distanceToBorder In order to avoid border effects, the 
#' \emph{distanceToBorder} points near the border of the recurrence matrix 
#' are ignored when computing the RQA parameters. Default, 
#' \emph{distanceToBorder} = 2.
#' @return A \emph{rqa}  object that consist of a list with the most important 
#' RQA parameters:
#' \itemize{
#'  \item \emph{recurrence.matrix}: A sparse symmetric matrix containing the 
#'  recurrences of the phase space.
#'  \item \emph{REC}: Recurrence. Percentage of recurrence points in a 
#'  Recurrence Plot.
#'  \item \emph{DET}: Determinism. Percentage of recurrence points that form 
#'  diagonal lines.
#'  \item \emph{LAM}: Percentage of recurrent points that form vertical lines.
#'  \item \emph{RATIO}: Ratio between \emph{DET} and \emph{RR}.
#'  \item \emph{Lmax}: Length of the longest diagonal line.
#'  \item \emph{Lmean}: Mean length of the diagonal lines. The main diagonal is
#'   not taken into account.
#'  \item \emph{DIV}: Inverse of \emph{Lmax}.
#'  \item \emph{Vmax}: Longest vertical line.
#'  \item \emph{Vmean}: Average length of the vertical lines. This parameter is 
#'  also referred to as the Trapping time.
#'  \item \emph{ENTR}: Shannon entropy of the diagonal line lengths distribution
#'  \item \emph{TREND}: Trend of the number of recurrent points depending on the
#'   distance to the main diagonal
#'  \item \emph{diagonalHistogram}: Histogram of the length of the diagonals.
#'  \item \emph{recurrenceRate}: Number of recurrent points depending on the 
#'  distance to the main diagonal.
#' }
#' 
#' @references Zbilut, J. P. and C. L. Webber. Recurrence quantification 
#' analysis. Wiley Encyclopedia of Biomedical Engineering  (2006).
#' @examples
#' \dontrun{
#' rossler.ts =  rossler(time=seq(0, 10, by = 0.01),do.plot=FALSE)$x
#' rqa.analysis=rqa(time.series = rossler.ts, embedding.dim=2, time.lag=1,
#'                radius=1.2,lmin=2,do.plot=FALSE,distanceToBorder=2)
#' plot(rqa.analysis)
#' }
#' @author Constantino A. Garcia and Gunther Sawitzki
#' @rdname rqa
#' @export rqa
rqa = function(takens = NULL, time.series = NULL, embedding.dim = 2,
               time.lag = 1, radius, lmin = 2, vmin = 2, distanceToBorder = 2, 
               save.RM = TRUE, do.plot = FALSE, ...) {
  if (is.null(takens)) {
    takens = buildTakens( time.series, embedding.dim = embedding.dim, time.lag = time.lag)  
  } 
  ntakens = nrow(takens)
  # distance to the border of the matrix to use in the linear regression that estimates
  #the trend
  maxDistanceMD = ntakens - distanceToBorder
  # this should not happen
  if (maxDistanceMD <= 1) {
    maxDistanceMD = 2 
  } 
  neighs = findAllNeighbours(takens, radius)
  if (save.RM || do.plot) {
    neighs.matrix = neighbourList2SparseMatrix(neighs)
  }
  if (do.plot) {
    rec.plot = recurrencePlotFromMatrix(neighs.matrix,...)
  }
  hist = getHistograms(neighs, ntakens, lmin, vmin)
  # calculate the number of recurrence points from the recurrence rate. The 
  # recurrence rate counts the number of points at every distance in a concrete 
  # side of the main diagonal.
  # Thus, sum all points for all distances, multiply by 2 (count both sides) and 
  # add the maindiagonal
  numberRecurrencePoints = sum(hist$recurrenceHist) + ntakens
  # calculate the recurrence rate dividing the number of recurrent points at a 
  # given distance by all points that could be at that distance
  recurrence_rate_vector = hist$recurrenceHist[1:(ntakens - 1)] / ((ntakens - 1):1)
  # percentage of recurrent points
  REC = (numberRecurrencePoints) / ntakens ^ 2
  diagP = calculateDiagonalParameters(
    ntakens, numberRecurrencePoints, lmin, hist$diagonalHist,
    recurrence_rate_vector, maxDistanceMD
  )
  # paramenters dealing with vertical lines
  vertP = calculateVerticalParameters(ntakens, numberRecurrencePoints, vmin,
                                      hist$verticalHist)
  # join all computations
  rqa.parameters = c(
    REC = REC, RATIO = diagP$DET / REC,
    diagP, vertP,
    list(
      diagonalHistogram = hist$diagonalHist,
      verticalHistogram = hist$verticalHist,
      recurrenceRate = recurrence_rate_vector
    )
  )
  
  if (!save.RM) {
    neighs.matrix = NULL
  }
  rqa.analysis = c(list(recurrence.matrix = neighs.matrix),
                   rqa.parameters)
  
  rqa.analysis = propagateTakensAttr(rqa.analysis, takens)
  attr(rqa.analysis, "radius") = radius
  class(rqa.analysis) = "rqa"
  
  rqa.analysis
}

#' @export
plot.rqa = function(x,...){
  if (!is.null(x$recurrence.matrix)) {
    recurrencePlotFromMatrix(x$recurrence.matrix,
                             ...)
  }else{
    stop("The recurrence matrix has not been stored... Impossible to plot!")
  }
  
}

#' Recurrence Plot 
#' @description
#' Plot the recurrence matrix.
#' @details
#' WARNING: This function is computationally very expensive. Use with caution.
#' @param time.series The original time series from which the phase-space 
#' reconstruction is performed.
#' @param embedding.dim Integer denoting the dimension in which we shall embed 
#' the \emph{time.series}.
#' @param time.lag Integer denoting the number of time steps that will be use 
#' to construct the  Takens' vectors.
#' @param takens Instead of specifying the \emph{time.series}, the 
#' \emph{embedding.dim} and the \emph{time.lag}, the user may specify directly 
#' the Takens' vectors. 
#' @param radius Maximum distance between two phase-space points to be 
#' considered a recurrence.
#' @param ... Additional plotting parameters.
#' @references Zbilut, J. P. and C. L. Webber. Recurrence quantification 
#' analysis. Wiley Encyclopedia of Biomedical Engineering  (2006).
#' @author Constantino A. Garcia
#' @export recurrencePlot
#' @import Matrix
#' @useDynLib nonlinearTseries
recurrencePlot = function(takens = NULL, time.series, 
                          embedding.dim, time.lag,radius,
                          ...){
  if (is.null(takens)) {
    takens = buildTakens(time.series,
                         embedding.dim = embedding.dim, 
                         time.lag = time.lag)  
  } 
  neighs.matrix = neighbourList2SparseMatrix(findAllNeighbours(takens, radius))
  recurrencePlotFromMatrix(neighs.matrix, ...)
}

#private 
recurrencePlotFromMatrix = function(neighs.matrix,
                                    main="Recurrence plot",
                                    xlab="Takens vector's index",
                                    ylab="Takens vector's index", ...) {
  # need a print because it is a trellis object!!
  rec.plot = image(neighs.matrix,
                   main = main, xlab = xlab, ylab = ylab, 
                   ...)
  print(rec.plot)
  rec.plot
}

neighs2numericType = function(neighs){
  lapply(neighs,
         FUN = function(x) {
           if (length(x) == 0) {
             numeric()
           } else{
             x
           }
         })
}

neighbourList2SparseMatrix = function(neighs) {
  ntakens = length(neighs)
  neighs = neighs2numericType(neighs)
  neigh.len = sum(sapply(neighs, FUN = length)) + ntakens
  neighs.matrix = matrix(0,nrow = neigh.len , ncol = 2)
  .Call("_nonlinearTseries_neighsList2SparseRCreator",
        neighs = as.list(neighs), ntakens = as.integer(ntakens), 
        neighs_matrix = as.matrix(neighs.matrix), PACKAGE = "nonlinearTseries")
  neighs.matrix
  sparseMatrix(neighs.matrix[,1],neighs.matrix[,2],dims = c(ntakens,ntakens),
               symmetric = T)
}

neighbourListToCsparseNeighbourMatrix = function(neighs) {
  # sum 1 to columns to include the diagonal (i,i) elements
  neighs.len = sapply(neighs,length)
  max.neighs = 1 + max(neighs.len)
  neighs.matrix = matrix(-1, nrow = length(neighs),
                         ncol = max.neighs)
  neighs = neighs2numericType(neighs)
  .Call("_nonlinearTseries_neighsList2Sparse",
        neighs = as.list(neighs),
        neighs_matrix = as.matrix(neighs.matrix),
        PACKAGE = "nonlinearTseries"
  )
  list(neighs = neighs.matrix, nneighs = (neighs.len + 1) )
}


calculateVerticalParameters = function(ntakens, numberRecurrencePoints,
                                       vmin = 2, verticalLinesHistogram) {
  #begin parameter computations
  num = sum((vmin:ntakens) * verticalLinesHistogram[vmin:ntakens])
  LAM = num / numberRecurrencePoints
  Vmean = num / sum(verticalLinesHistogram[vmin:ntakens])
  if (is.nan(Vmean)) {
    Vmean = 0
  }
  #pick the penultimate
  histogramWithoutZeros = which(verticalLinesHistogram > 0)
  if (length(histogramWithoutZeros) > 0) {
    Vmax = tail(histogramWithoutZeros, 1)
  } else {
    Vmax = 0
  } 
  #results
  list(LAM = LAM, Vmax = Vmax, Vmean = Vmean)
}

calculateDiagonalParameters = function(ntakens, numberRecurrencePoints,
                                       lmin = 2, lDiagonalHistogram,
                                       recurrence_rate_vector, maxDistanceMD) {
  #begin parameter computations
  num = sum((lmin:ntakens) * lDiagonalHistogram[lmin:ntakens])
  DET = num / numberRecurrencePoints
  Lmean = num / sum(lDiagonalHistogram[lmin:ntakens])
  aux.index = lmin:(ntakens - 1)
  LmeanWithoutMain = (
    sum((aux.index) * lDiagonalHistogram[aux.index]) / 
      sum(lDiagonalHistogram[aux.index])
  )
  #pick the penultimate
  Lmax = tail(which(lDiagonalHistogram > 0), 2)[1]
  if (is.na(Lmax) || Lmax == ntakens) {
    Lmax = 0
  }
  DIV = 1 / Lmax
  pl = lDiagonalHistogram / sum(lDiagonalHistogram)
  diff_0 = which(pl > 0)
  ENTR = -sum(pl[diff_0] * log(pl[diff_0]))
  
  # use only recurrent points with a distance to the main diagonal < maxDistance
  recurrence_rate_vector = recurrence_rate_vector[1:maxDistanceMD]
  mrrv = mean(recurrence_rate_vector)
  #auxiliar vector for the linear regresion: It is related to the general regression
  #formula xi-mean(x)
  auxiliarVector = (1:maxDistanceMD - (maxDistanceMD + 1) / 2)
  auxiliarVector2 = auxiliarVector * auxiliarVector
  # divide by two because we are having into account just one side of the main diag
  num = sum(auxiliarVector * ((recurrence_rate_vector - mrrv) / 2)) 
  den = sum(auxiliarVector2)
  TREND = num / den
  #results
  list(
    DET = DET, DIV = DIV, Lmax = Lmax, Lmean = Lmean,
    LmeanWithoutMain = LmeanWithoutMain, ENTR = ENTR, TREND = TREND
  )
}

getHistograms = function(neighs, ntakens, lmin, vmin){
  # the neighbours are labeled from 0 to ntakens-1
  c.matrix = neighbourListToCsparseNeighbourMatrix(neighs)
  # auxiliar variables
  .Call("_nonlinearTseries_get_rqa_histograms", 
        neighs = c.matrix$neighs, nneighs = c.matrix$nneighs,
        ntakens = as.integer(ntakens), vmin = as.integer(vmin),
        lmin = as.integer(lmin),
        PACKAGE = "nonlinearTseries")
}  

Try the nonlinearTseries package in your browser

Any scripts or data that you put into this service are public.

nonlinearTseries documentation built on May 2, 2019, 5:47 p.m.