Nothing
slice2D <- function(object, ...) {
UseMethod("slice2D")
}
slice2D.clm <-
function(object, parm=seq_along(par), lambda=3, grid=20, ...)
{
## argument matching and testing:
stopifnot(is.numeric(lambda) && lambda > 0)
stopifnot(is.numeric(grid) && grid >= 1)
grid <- as.integer(round(grid))
par <- coef(object, na.rm=TRUE)
par.names <- names(par)
stopifnot(length(parm) == length(unique(parm)))
if(is.character(parm))
parm <- match(parm, par.names, nomatch = 0)
if(!all(parm %in% seq_along(par)))
stop("invalid 'parm' argument")
stopifnot(length(parm) >= 2L)
parm <- as.integer(parm)
nparm <- length(parm)
## parm is an integer vector indexing non-aliased coef.
ml <- object$logLik
parm.names <- par.names[parm]
mle <- par[parm]
## get environment corresponding to object:
env <- get_clmRho(object)
## env <- update(object, doFit=FALSE)
names(par) <- NULL
env$par <- as.vector(par) ## set env$par to mle
stopifnot(isTRUE(all.equal(env$clm.nll(env), -object$logLik)))
## generate sequence of parameters at which to compute the
## log-likelihood:
curv <- sqrt(1/diag(object$Hessian)) ## curvature in nll wrt. par
par.range <- par + curv %o% (c(-1, 1) * lambda)
## All pairwise combinations:
pairs <- t(combn(seq_len(nparm), 2))
ncombn <- nrow(pairs)
### Allow for sequential paired comparisons?
par.seq <- lapply(parm, function(ind) {
seq(par.range[ind, 1], par.range[ind, 2], length = grid) })
names(par.seq) <- par.names
zlist <- vector(mode="list", length=ncombn)
names(zlist) <- paste(par.names[pairs[, 1]],
par.names[pairs[, 2]], sep=".")
for(k in 1:ncombn) {
i <- pairs[k, 1]
j <- pairs[k, 2]
xx <- expand.grid(x=par.seq[[i]], y=par.seq[[j]])
## Set parameter values to MLEs:
env$par <- par
## Compute log-likelihood over entire grid:
z <- apply(xx, 1, function(x) {
env$par[c(i, j)] <- as.vector(x);
env$clm.nll(env) })
## Store log-likelihood values in a matrix:
zlist[[k]] <- matrix(z, ncol=grid)
}
res <-
list(zlist=zlist, par.seq=par.seq, par.range=par.range,
pairs=pairs,
original.fit=object, mle=mle)
class(res) <- c("slice2D.clm")
res
}
safe.as.int <- function(x) as.integer(round(x))
plot.slice2D.clm <-
function(x, parm = seq_along(orig.par), ## How to specify default values
## of parm?
plot.mle = TRUE,
ask = prod(par("mfcol")) < nrow(pairs) && dev.interactive(),
...)
### parm: a character vector or integer vector of length >= 2 with
### those par-combinations to make contour plots.
{
## stopifnot(all parm in names(par.seq))
orig.par <- coef(x$original.fit, na.rm=TRUE)
### More parm stuff here...
stopifnot(is.numeric(parm) && length(parm) >= 2L)
parm <- as.integer(round(parm))
par.names <- names(orig.par)
## of <- attr(x, "original.fit")
## par <- coef(of)
## ml <- of$logLik
keep <- (x$pairs[, 1] %in% parm) & (x$pairs[, 2] %in% parm)
pairs <- x$pairs[keep, , drop=FALSE]
stopifnot(length(pairs) >= 2)
if(ask) {
oask <- devAskNewPage(TRUE)
on.exit(devAskNewPage(oask))
}
## Plotting the contours:
for(k in seq_len(nrow(pairs))) {
i <- pairs[k, 1]
j <- pairs[k, 2]
contour(x$par.seq[[i]], x$par.seq[[j]], x$zlist[[k]],
xlab = par.names[i], ylab = par.names[j])
points(orig.par[i], orig.par[j], pch = 4, col = "red", lwd = 2)
}
return(invisible())
}
sliceg.clm <-
function(object, parm = seq_along(par), lambda = 3, grid = 1e2,
quad.approx = TRUE, ...)
{
## argument matching and testing:
stopifnot(is.numeric(lambda) && lambda > 0)
stopifnot(is.numeric(grid) && grid >= 1)
grid <- as.integer(round(grid))
par <- coef(object, na.rm=TRUE)
par.names <- names(par)
npar <- length(par)
stopifnot(length(parm) == length(unique(parm)))
if(is.character(parm))
parm <- match(parm, par.names, nomatch = 0)
### disallow character argument due to ambiguity?
if(!all(parm %in% seq_along(par)))
stop("invalid 'parm' argument")
stopifnot(length(parm) > 0)
parm <- as.integer(round(parm))
## parm is an integer vector indexing non-aliased coef.
ml <- object$logLik
parm.names <- par.names[parm]
## get environment corresponding to object:
rho <- get_clmRho(object)
## rho <- update(object, doFit = FALSE)
names(par) <- NULL
rho$par <- par ## set rho$par to mle
stopifnot(isTRUE(all.equal(rho$clm.nll(rho), -object$logLik)))
## generate sequence of parameters at which to compute the
## log-likelihood:
curv <- sqrt(1/diag(object$Hessian)) ## curvature in nll wrt. par
par.range <- par + curv %o% c(-lambda, lambda)
## par.seq - list of length npar with a sequence of values for each
## parameter :
par.seq <- lapply(parm, function(ind) {
seq(par.range[ind, 1], par.range[ind, 2], length = grid) })
## compute relative logLik for all par.seq for each par:
logLik <- lapply(seq_along(parm), function(i) { # for each par
rho$par <- par ## reset par values to MLE
sapply(par.seq[[ i ]], function(par.val) { # for each par.seq value
rho$par[ parm[i] ] <- par.val
rho$clm.nll(rho)
rho$clm.grad(rho)[ parm[i] ]
})
})
## collect parameter sequences and relative logLik in a list of
## data.frames:
res <- lapply(seq_along(parm), function(i) {
structure(data.frame(par.seq[[ i ]], logLik[[ i ]]),
## names = c(parm.names[i], "logLik"))
names = c(parm.names[i], "gradient"))
})
## set attributes:
names(res) <- parm.names
attr(res, "original.fit") <- object
attr(res, "mle") <- par[parm]
## class(res) <- "slice.clm"
class(res) <- "sliceg.clm"
## if(!quad.approx) return(res)
## ## compute quadratic approx to *positive* logLik:
## Quad <- function(par, mle, curv)
## -((mle - par)^2 / curv^2 / 2)
## for(i in seq_along(parm))
## res[[ i ]]$quad <-
## Quad(par.seq[[ i ]], par[ parm[i] ], curv[ parm[i] ])
return(res)
}
plot.sliceg.clm <-
function(x, parm = seq_along(x), type = c("quadratic", "linear"),
plot.mle = TRUE,
ask = prod(par("mfcol")) < length(parm) && dev.interactive(),
...)
{
## Initiala argument matching and testing:
type <- match.arg(type)
stopifnot(is.numeric(parm))
parm <- as.integer(round(parm))
of <- attr(x, "original.fit")
par <- coef(of)
ml <- of$logLik
## take the signed sqrt of nll and quad:
## if(type == "linear") {
## sgn.sqrt <- function(par, mle, logLik)
## (2 * (par > mle) - 1) * sqrt(-logLik)
## mle <- coef(attr(x, "original.fit"))
## for(i in parm) {
## x[[i]]$logLik <- sgn.sqrt(x[[i]][1], mle[i], x[[i]]$logLik)
## if(!is.null(x[[i]]$quad))
## x[[i]]$quad <- sgn.sqrt(x[[i]][1], mle[i], x[[i]]$quad)
## }
## ylab <- "Signed log-likelihood root"
## }
## else
## ylab <- "Relative log-likelihood"
ylab <- "Gradient"
if(ask) {
oask <- devAskNewPage(TRUE)
on.exit(devAskNewPage(oask))
}
## actual plotting:
for(i in parm) {
z <- x[[i]]
plot(z[1:2], type = "l", ylab=ylab, ...)
if(!is.null(z$quad))
lines(z[[1]], z[[3]], lty = 2)
if(plot.mle && type == "quadratic")
## abline(v = par[i])
abline(v = attr(x, "mle")[i])
## abline(v = par[names(x)[i]])
}
return(invisible())
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.