Nothing
starX <- function(formula, data, model, rhs = 1, effect){
# non-exported, used for IV estimations "am" and "bms"
# produces a column per time period with the (transformed) data
# NB: function is not symmetric in individual and time effect
apdim <- pdim(data)
amatrix <- model.matrix(data, model, effect, rhs)
T <- apdim$nT$T # was (same): length(unique(index(data, 2L)))
N <- apdim$nT$n # was (same): length(unique(index(data, 1L)))
if (apdim$balanced){
result <- Reduce("cbind",
lapply(seq_len(ncol(amatrix)),
function(x)
matrix(amatrix[ , x],
ncol = T, byrow = TRUE)[rep(1:N, each = T), ]))
}
else{ # unbalanced
Ti <- apdim$Tint$Ti
result <- lapply(seq_len(ncol(amatrix)), function(x)
structure(amatrix[ , x], index = index(data),
class = c("pseries", class(amatrix[ , x]))))
result <- Reduce("cbind", lapply(result, as.matrix))
result <- result[rep(1:N, times = Ti), ]
result[is.na(result)] <- 0
}
result
}
# Regards plm man page: some elements not listed here...: "assign", "contrast",
# etc... \item{na.action}{if relevant, information about handling of
# NAs by the model.frame function,}
# NB: na.action is currently not included as it is not supported
#' Panel Data Estimators
#'
#' Linear models for panel data estimated using the `lm` function on
#' transformed data.
#'
#' `plm` is a general function for the estimation of linear panel
#' models. It supports the following estimation methods: pooled OLS
#' (`model = "pooling"`), fixed effects (`"within"`), random effects
#' (`"random"`), first--differences (`"fd"`), and between
#' (`"between"`). It supports unbalanced panels and two--way effects
#' (although not with all methods).
#'
#' For random effects models, four estimators of the transformation
#' parameter are available by setting `random.method` to one of
#' `"swar"` \insertCite{SWAM:AROR:72}{plm} (default), `"amemiya"`
#' \insertCite{AMEM:71}{plm}, `"walhus"`
#' \insertCite{WALL:HUSS:69}{plm}, or `"nerlove"`
#' \insertCite{NERLO:71}{plm} (see below for Hausman-Taylor instrumental
#' variable case).
#'
#' For first--difference models, the intercept is maintained (which
#' from a specification viewpoint amounts to allowing for a trend in
#' the levels model). The user can exclude it from the estimated
#' specification the usual way by adding `"-1"` to the model formula.
#'
#' Instrumental variables estimation is obtained using two--part
#' formulas, the second part indicating the instrumental variables
#' used. This can be a complete list of instrumental variables or an
#' update of the first part. If, for example, the model is `y ~ x1 +
#' x2 + x3`, with `x1` and `x2` endogenous and `z1` and `z2` external
#' instruments, the model can be estimated with:
#'
#' \itemize{
#' \item `formula = y~x1+x2+x3 | x3+z1+z2`,
#' \item `formula = y~x1+x2+x3 | . -x1-x2+z1+z2`.
#' }
#'
#' If an instrument variable estimation is requested, argument
#' `inst.method` selects the instrument variable transformation
#' method:
#'
#' - `"bvk"` (default) for \insertCite{BALE:VARA:87;textual}{plm},
#' - `"baltagi"` for \insertCite{BALT:81;textual}{plm},
#' - `"am"` for \insertCite{AMEM:MACU:86;textual}{plm},
#' - `"bms"` for \insertCite{BREU:MIZO:SCHM:89;textual}{plm}.
#'
#' The Hausman--Taylor estimator \insertCite{HAUS:TAYL:81}{plm} is
#' computed with arguments `random.method = "ht"`, `model = "random"`,
#' `inst.method = "baltagi"` (the other way with only `model = "ht"`
#' is deprecated).
#'
#' See also the vignettes for introductions to model estimations (and more) with
#' examples.
#'
#' @aliases plm
#' @param formula a symbolic description for the model to be
#' estimated,
#' @param x,object an object of class `"plm"`,
#' @param data a `data.frame`,
#' @param subset see [stats::lm()],
#' @param weights see [stats::lm()],
#' @param na.action see [stats::lm()]; currently, not fully
#' supported,
#' @param effect the effects introduced in the model, one of
#' `"individual"`, `"time"`, `"twoways"`, or
#' `"nested"`,
#' @param model one of `"pooling"`, `"within"`,
#' `"between"`, `"random"` `"fd"`, or `"ht"`,
#' @param random.method method of estimation for the variance
#' components in the random effects model, one of `"swar"`
#' (default), `"amemiya"`, `"walhus"`, `"nerlove"`; for
#' Hausman-Taylor estimation set to `"ht"` (see Details and Examples),
#' @param random.models an alternative to the previous argument, the
#' models used to compute the variance components estimations are
#' indicated,
#' @param random.dfcor a numeric vector of length 2 indicating which
#' degree of freedom should be used,
#' @param inst.method the instrumental variable transformation: one of
#' `"bvk"`, `"baltagi"`, `"am"`, or `"bms"` (see also Details),
#' @param index the indexes,
#' @param restrict.matrix a matrix which defines linear restrictions
#' on the coefficients,
#' @param restrict.rhs the right hand side vector of the linear
#' restrictions on the coefficients,
#' @param digits number of digits for printed output,
#' @param width the maximum length of the lines in the printed output,
#' @param dx the half--length of the individual lines for the plot
#' method (relative to x range),
#' @param N the number of individual to plot,
#' @param seed the seed which will lead to individual selection,
#' @param within if `TRUE`, the within model is plotted,
#' @param pooling if `TRUE`, the pooling model is plotted,
#' @param between if `TRUE`, the between model is plotted,
#' @param random if `TRUE`, the random effect model is plotted,
#' @param formula. a new formula for the update method,
#' @param evaluate a boolean for the update method, if `TRUE` the
#' updated model is returned, if `FALSE` the call is returned,
#' @param newdata the new data set for the `predict` method,
#' @param \dots further arguments.
#'
#' @return An object of class `"plm"`.
#'
#'
#' A `"plm"` object has the following elements :
#'
#' \item{coefficients}{the vector of coefficients,}
#' \item{vcov}{the variance--covariance matrix of the coefficients,}
#' \item{residuals}{the vector of residuals (these are the residuals
#' of the (quasi-)demeaned model),}
#' \item{weights}{(only for weighted estimations) weights as
#' specified,}
#' \item{df.residual}{degrees of freedom of the residuals,}
#' \item{formula}{an object of class `"pFormula"` describing the model,}
#' \item{model}{the model frame as a `"pdata.frame"` containing the
#' variables used for estimation: the response is in first column followed by
#' the other variables, the individual and time indexes are in the 'index'
#' attribute of `model`,}
#' \item{ercomp}{an object of class `"ercomp"` providing the
#' estimation of the components of the errors (for random effects
#' models only),}
#' \item{aliased}{named logical vector indicating any aliased
#' coefficients which are silently dropped by `plm` due to
#' linearly dependent terms (see also [detect.lindep()]),}
#' \item{call}{the call.}
#'
#'
#' It has `print`, `summary` and `print.summary` methods. The
#' `summary` method creates an object of class `"summary.plm"` that
#' extends the object it is run on with information about (inter alia) F
#' statistic and (adjusted) R-squared of model, standard errors, t--values, and
#' p--values of coefficients, (if supplied) the furnished vcov, see
#' [summary.plm()] for further details.
#' @import Formula
#' @importFrom stats alias approx as.formula coef coefficients cor delete.response
#' @importFrom stats deviance df.residual dnorm fitted formula lm lm.fit model.frame
#' @importFrom stats model.matrix model.response model.weights na.omit pchisq pf
#' @importFrom stats pnorm printCoefmat pt qnorm reshape resid residuals sd terms
#' @importFrom stats update var vcov
#' @importFrom grDevices heat.colors rainbow
#' @importFrom graphics abline axis barplot legend lines plot points
#' @export
#' @author Yves Croissant
#' @seealso [summary.plm()] for further details about the associated
#' summary method and the "summary.plm" object both of which provide some model
#' tests and tests of coefficients. [fixef()] to compute the fixed
#' effects for "within" models (=fixed effects models).
#' @references
#'
#' \insertRef{AMEM:71}{plm}
#'
#' \insertRef{AMEM:MACU:86}{plm}
#'
#' \insertRef{BALE:VARA:87}{plm}
#'
#' \insertRef{BALT:81}{plm}
#'
#' \insertRef{BALT:SONG:JUNG:01}{plm}
#'
#' \insertRef{BALT:13}{plm}
#'
#' \insertRef{BREU:MIZO:SCHM:89}{plm}
#'
#' \insertRef{HAUS:TAYL:81}{plm}
#'
#' \insertRef{NERLO:71}{plm}
#'
#' \insertRef{SWAM:AROR:72}{plm}
#'
#' \insertRef{WALL:HUSS:69}{plm}
#'
#' @keywords regression
#' @examples
#'
#' data("Produc", package = "plm")
#' zz <- plm(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,
#' data = Produc, index = c("state","year"))
#' summary(zz)
#'
#' # replicates some results from Baltagi (2013), table 3.1
#' data("Grunfeld", package = "plm")
#' p <- plm(inv ~ value + capital,
#' data = Grunfeld, model = "pooling")
#'
#' wi <- plm(inv ~ value + capital,
#' data = Grunfeld, model = "within", effect = "twoways")
#'
#' swar <- plm(inv ~ value + capital,
#' data = Grunfeld, model = "random", effect = "twoways")
#'
#' amemiya <- plm(inv ~ value + capital,
#' data = Grunfeld, model = "random", random.method = "amemiya",
#' effect = "twoways")
#'
#' walhus <- plm(inv ~ value + capital,
#' data = Grunfeld, model = "random", random.method = "walhus",
#' effect = "twoways")
#'
#' # summary and summary with a furnished vcov (passed as matrix,
#' # as function, and as function with additional argument)
#' summary(wi)
#' summary(wi, vcov = vcovHC(wi))
#' summary(wi, vcov = vcovHC)
#' summary(wi, vcov = function(x) vcovHC(x, method = "white2"))
#'
#'
#' ## nested random effect model
#' # replicate Baltagi/Song/Jung (2001), p. 378 (table 6), columns SA, WH
#' # == Baltagi (2013), pp. 204-205
#' data("Produc", package = "plm")
#' pProduc <- pdata.frame(Produc, index = c("state", "year", "region"))
#' form <- log(gsp) ~ log(pc) + log(emp) + log(hwy) + log(water) + log(util) + unemp
#' summary(plm(form, data = pProduc, model = "random", effect = "nested"))
#' summary(plm(form, data = pProduc, model = "random", effect = "nested",
#' random.method = "walhus"))
#'
#' ## Instrumental variable estimations
#' # replicate Baltagi (2013/2021), p. 133/162, table 7.1
#' data("Crime", package = "plm")
#' FE2SLS <- plm(lcrmrte ~ lprbarr + lpolpc + lprbconv + lprbpris + lavgsen +
#' ldensity + lwcon + lwtuc + lwtrd + lwfir + lwser + lwmfg + lwfed +
#' lwsta + lwloc + lpctymle + lpctmin + region + smsa + factor(year)
#' | . - lprbarr - lpolpc + ltaxpc + lmix,
#' data = Crime, model = "within")
#' G2SLS <- update(FE2SLS, model = "random", inst.method = "bvk")
#' EC2SLS <- update(G2SLS, model = "random", inst.method = "baltagi")
#'
#' ## Hausman-Taylor estimator and Amemiya-MaCurdy estimator
#' # replicate Baltagi (2005, 2013), table 7.4; Baltagi (2021), table 7.5
#' data("Wages", package = "plm")
#' ht <- plm(lwage ~ wks + south + smsa + married + exp + I(exp ^ 2) +
#' bluecol + ind + union + sex + black + ed |
#' bluecol + south + smsa + ind + sex + black |
#' wks + married + union + exp + I(exp ^ 2),
#' data = Wages, index = 595,
#' random.method = "ht", model = "random", inst.method = "baltagi")
#' summary(ht)
#'
#' am <- plm(lwage ~ wks + south + smsa + married + exp + I(exp ^ 2) +
#' bluecol + ind + union + sex + black + ed |
#' bluecol + south + smsa + ind + sex + black |
#' wks + married + union + exp + I(exp ^ 2),
#' data = Wages, index = 595,
#' random.method = "ht", model = "random", inst.method = "am")
#' summary(am)
#'
plm <- function(formula, data, subset, weights, na.action,
effect = c("individual", "time", "twoways", "nested"),
model = c("within", "random", "ht", "between", "pooling", "fd"),
random.method = NULL,
random.models = NULL,
random.dfcor = NULL,
inst.method = c("bvk", "baltagi", "am", "bms"),
restrict.matrix = NULL,
restrict.rhs = NULL,
index = NULL,
...){
if (is.list(formula)){
# if the first argument is a list (of formulas), then call plmlist and early exit
plmlist <- match.call(expand.dots = FALSE)
plmlist[[1L]] <- as.name("plm.list")
# eval in nframe and not the usual parent.frame(), relevant?
nframe <- length(sys.calls())
plmlist <- eval(plmlist, sys.frame(which = nframe))
return(plmlist)
}
if ((! is.null(restrict.matrix) || ! is.null(restrict.rhs)) && ! is.list(formula)) {
stop(paste0("arguments 'restrict.matrix' and 'restrict.rhs' cannot yet be used ",
"for single equations"))
}
dots <- list(...)
# check and match the effect and model arguments
effect <- match.arg(effect)
# note that model can be NA, in this case the model.frame is returned
if (! anyNA(model)) model <- match.arg(model)
if (! anyNA(model) && effect == "nested" && model != "random") {
# input check for nested RE model
# warns since 2021-07-02 on R-Forge (prev. silently changed model = "random");
# should become an error in the future
warning(paste0("effect = \"nested\" only valid for model = \"random\", but input is model = \"",
model, "\", changed to \"random\""))
model <- "random"
}
# input checks for FD model: give informative error messages as
# described in footnote in vignette
if (! anyNA(model) && model == "fd") {
if (effect == "time") stop(paste("effect = \"time\" for first-difference model",
"meaningless because cross-sections do not",
"generally have a natural ordering"))
if (effect == "twoways") stop(paste("effect = \"twoways\" is not defined",
"for first-difference models"))
}
# Deprecated section
if (length(inst.method) == 1L && inst.method == "bmc") {
# catch "bmc" (a long-standing typo) for Breusch-Mizon-Schmidt
# error since 2020-12-31 (R-Forge) / 2021-01-23 (CRAN), was warning before
# remove catch at some point in the future
inst.method <- "bms"
stop(paste("Use of inst.method = \"bmc\" disallowed, set to \"bms\"",
"for Breusch-Mizon-Schmidt instrumental variable transformation"))
}
inst.method <- match.arg(inst.method)
# model = "ht" in plm() and pht() are no longer maintained, but working
# -> call pht() and early exit
if (! anyNA(model) && model == "ht"){
ht <- match.call(expand.dots = FALSE)
m <- match(c("formula", "data", "subset", "na.action", "index"), names(ht), 0)
ht <- ht[c(1L, m)]
ht[[1L]] <- as.name("pht")
ht <- eval(ht, parent.frame())
return(ht)
}
# check whether data and formula are pdata.frame and pFormula and if not
# coerce them
orig_rownames <- row.names(data)
if (! inherits(data, "pdata.frame")) data <- pdata.frame(data, index)
if (! inherits(formula, "Formula")) formula <- as.Formula(formula)
# in case of 2-part formula, check whether the second part should
# be updated, e.g., y ~ x1 + x2 + x3 | . - x2 + z becomes
# y ~ x1 + x2 + x3 | x1 + x3 + z
# use length(formula)[2] because the length is now a vector of length 2
# if (length(formula)[2] == 2) formula <- expand.formula(formula)
# eval the model.frame
cl <- match.call()
mf <- match.call(expand.dots = FALSE)
m <- match(c("data", "formula", "subset", "weights", "na.action"), names(mf), 0)
mf <- mf[c(1L, m)]
names(mf)[2:3] <- c("formula", "data")
mf$drop.unused.levels <- TRUE
mf[[1L]] <- as.name("model.frame")
# use the Formula and pdata.frame which were created if necessary (and not
# the original formula / data)
mf$formula <- data
mf$data <- formula
data <- eval(mf, parent.frame())
# preserve original row.names for data [also fancy rownames]; so functions
# like pmodel.response(), model.frame(), model.matrix(), residuals() return
# the original row.names eval(mf, parent.frame()) returns row.names as
# character vector containing the "row_number" with incomplete observations
# dropped
row.names(data) <- orig_rownames[as.numeric(row.names(data))]
# return the model.frame (via early exit) if model = NA, else estimate model
if (is.na(model)){
attr(data, "formula") <- formula
return(data)
}
# note that the model.frame has as attributes the pFormula and the index
# data.frame
args <- list(model = model, effect = effect,
random.method = random.method,
random.models = random.models,
random.dfcor = random.dfcor,
inst.method = inst.method)
result <- plm.fit(data, model, effect, random.method,
random.models, random.dfcor, inst.method)
result$call <- cl
result$args <- args
result
}
plm.fit <- function(data, model, effect, random.method,
random.models, random.dfcor, inst.method){
formula <- attr(data, "formula")
# check for 0 cases like in stats::lm.fit (e.g., due to NA dropping)
if (nrow(data) == 0L) stop("0 (non-NA) cases")
# if a random effect model is estimated, compute the error components
if (model == "random"){
is.balanced <- is.pbalanced(data)
estec <- ercomp(data, effect, method = random.method,
models = random.models, dfcor = random.dfcor)
sigma2 <- estec$sigma2
theta <- estec$theta
if (length(formula)[2L] > 1L && effect == "twoways")
stop(paste("Instrumental variable random effect estimation",
"not implemented for two-ways panels"))
}
else theta <- NULL
# For all models except the unbalanced twoways random model, the
# estimator is obtained as a linear regression on transformed data
if (! (model == "random" && effect == "twoways" && ! is.balanced)){
# extract the model.matrix and the model.response actually, this can be
# done by providing model.matrix and pmodel.response's methods
# to pdata.frames
X <- model.matrix(data, rhs = 1, model = model,
effect = effect, theta = theta, cstcovar.rm = "all")
y <- pmodel.response(data, model = model,
effect = effect, theta = theta)
if (ncol(X) == 0L) stop("empty model")
w <- model.weights(data)
if (! is.null(w)){
if (! is.numeric(w)) stop("'weights' must be a numeric vector")
if (any(w < 0 | is.na(w))) stop("missing or negative weights not allowed")
X <- X * sqrt(w)
y <- y * sqrt(w)
}
else w <- 1
# IV case: extract the matrix of instruments if necessary
# (means here that we have a multi-parts formula)
if (length(formula)[2L] > 1L){
if(!is.null(model.weights(data)) || any(w != 1))
stop("argument 'weights' not yet implemented for instrumental variable models")
if ( ! (model == "random" && inst.method != "bvk")) {
# FD/FE/BE IV and RE "bvk" IV estimator
if (length(formula)[2L] == 2L){
W <- model.matrix(data, rhs = 2,
model = model, effect = effect,
theta = theta, cstcovar.rm = "all")
}
else{
W <- model.matrix(data, rhs = c(2, 3), model = model,
effect = effect, theta = theta, cstcovar.rm = "all")
}
}
if (model == "random" && inst.method != "bvk"){
# IV estimators RE "baltagi", "am", and "bms"
X <- X / sqrt(sigma2["idios"])
y <- y / sqrt(sigma2["idios"])
W1 <- model.matrix(data, rhs = 2, model = "within",
effect = effect, theta = theta, cstcovar.rm = "all")
B1 <- model.matrix(data, rhs = 2, model = "Between",
effect = effect, theta = theta, cstcovar.rm = "all")
if (inst.method %in% c("am", "bms"))
StarW1 <- starX(formula, data, rhs = 2, model = "within",
effect = effect)
if (length(formula)[2L] == 3L){
# eval. 3rd part of formula, if present
W2 <- model.matrix(data, rhs = 3, model = "within",
effect = effect, theta = theta, cstcovar.rm = "all")
if (inst.method == "bms")
StarW2 <- starX(formula, data, rhs = 3, model = "within",
effect = effect)
}
else W2 <- StarW2 <- NULL
if (inst.method == "baltagi") W <- sqrt(w) * cbind(W1, W2, B1) # TODO: here, some weighting is done but prevented earlier
if (inst.method == "am") W <- sqrt(w) * cbind(W1, W2, B1, StarW1) # by stop()?!
if (inst.method == "bms") W <- sqrt(w) * cbind(W1, W2, B1, StarW1, StarW2) # also: RE bvk/BE/FE IV does not have weighting code...
}
if (ncol(W) < ncol(X)) stop("insufficient number of instruments")
}
else W <- NULL # no instruments (no IV case)
result <- mylm(y, X, W)
df <- df.residual(result)
vcov <- result$vcov
aliased <- result$aliased
# in case of a within estimation, correct the degrees of freedom
if (model == "within"){
pdim <- pdim(data)
card.fixef <- switch(effect,
"individual" = pdim$nT$n,
"time" = pdim$nT$T,
"twoways" = pdim$nT$n + pdim$nT$T - 1
)
df <- df.residual(result) - card.fixef
vcov <- result$vcov * df.residual(result) / df
}
result <- list(coefficients = coef(result),
vcov = vcov,
residuals = resid(result),
weights = w,
df.residual = df,
formula = formula,
model = data)
if (is.null(model.weights(data))) result$weights <- NULL
if (model == "random") result$ercomp <- estec
}
else{
# random twoways unbalanced:
pdim <- pdim(data)
TS <- pdim$nT$T
theta <- estec$theta$id
phi2mu <- estec$sigma2["time"] / estec$sigma2["idios"]
Dmu <- model.matrix( ~ unclass(index(data))[[2L]] - 1)
attr(Dmu, "index") <- index(data)
Dmu <- Dmu - theta * Between(Dmu, "individual")
X <- model.matrix(data, rhs = 1, model = "random",
effect = "individual", theta = theta)
y <- pmodel.response(data, model = "random",
effect = "individual", theta = theta)
P <- solve(diag(TS) + phi2mu * crossprod(Dmu))
phi2mu.CPXDmu.P <- phi2mu * crossprod(X, Dmu) %*% P
XPX <- crossprod(X) - phi2mu.CPXDmu.P %*% crossprod(Dmu, X)
XPy <- crossprod(X, y) - phi2mu.CPXDmu.P %*% crossprod(Dmu, y)
gamma <- solve(XPX, XPy)[ , , drop = TRUE]
# residuals 'e' are not the residuals of a quasi-demeaned
# model but of the 'outer' model
e <- pmodel.response(data, model = "pooling", effect = effect) -
as.numeric(model.matrix(data, rhs = 1, model = "pooling") %*% gamma)
result <- list(coefficients = gamma,
vcov = solve(XPX),
formula = formula,
model = data,
ercomp = estec,
df.residual = nrow(X) - ncol(X),
residuals = e)
# derive 'aliased' information (this is based on the assumption that
# estimation fails anyway if singularities are present).
aliased <- is.na(gamma)
}
result$assign <- attr(X, "assign")
result$contrasts <- attr(X, "contrasts")
result$args <- list(model = model, effect = effect)
result$aliased <- aliased
class(result) <- c("plm", "panelmodel")
result
}
tss <- function(x, ...){
UseMethod("tss")
}
tss.default <- function(x){
# always gives centered TSS (= demeaned TSS)
var(x) * (length(x) - 1)
}
tss.plm <- function(x, model = NULL){
if (is.null(model)) model <- describe(x, "model")
effect <- describe(x, "effect")
if (model == "ht") model <- "pooling"
if (model == "random") theta <- x$ercomp$theta else theta <- NULL
tss(pmodel.response(x, model = model, effect = effect, theta = theta))
}
#' R squared and adjusted R squared for panel models
#'
#' This function computes R squared or adjusted R squared for plm objects. It
#' allows to define on which transformation of the data the (adjusted) R
#' squared is to be computed and which method for calculation is used.
#'
#'
#' @param object an object of class `"plm"`,
#' @param model on which transformation of the data the R-squared is to be
#' computed. If `NULL`, the transformation used to estimate the model is
#' also used for the computation of R squared,
#' @param type indicates method which is used to compute R squared. One of\cr
#' `"rss"` (residual sum of squares),\cr `"ess"` (explained sum of
#' squares), or\cr `"cor"` (coefficient of correlation between the fitted
#' values and the response),
#' @param dfcor if `TRUE`, the adjusted R squared is computed.
#' @return A numerical value. The R squared or adjusted R squared of the model
#' estimated on the transformed data, e. g., for the within model the so called
#' "within R squared".
#' @seealso [plm()] for estimation of various models;
#' [summary.plm()] which makes use of `r.squared`.
#' @keywords htest
#' @export
#' @examples
#'
#' data("Grunfeld", package = "plm")
#' p <- plm(inv ~ value + capital, data = Grunfeld, model = "pooling")
#' r.squared(p)
#' r.squared(p, dfcor = TRUE)
#'
r.squared <- function(object, model = NULL,
type = c("cor", "rss", "ess"), dfcor = FALSE){
## TODO: does not handle non-intercept models correctly
## see below r.squared_no_intercept
if (is.null(model)) model <- describe(object, "model")
effect <- describe(object, "effect")
type <- match.arg(type)
if (type == "cor"){
y <- pmodel.response(object, model = model, effect = effect)
haty <- fitted(object, model = model, effect = effect)
R2 <- cor(y, haty)^2
}
if (type == "rss"){
R2 <- 1 - deviance(object, model = model) / tss(object, model = model)
}
if (type == "ess"){
haty <- fitted(object, model = model)
mhaty <- mean(haty)
ess <- as.numeric(crossprod((haty - mhaty)))
R2 <- ess / tss(object, model = model)
}
### adj. R2 Still wrong for models without intercept, e.g., pooling models
# (but could be correct for within models, see comment below in function r.squared_no_intercept)
if (dfcor) R2 <- 1 - (1 - R2) * (length(resid(object)) - 1) / df.residual(object)
R2
}
## first try at r.squared adapted to be suitable for non-intercept models
r.squared_no_intercept <- function(object, model = NULL,
type = c("rss", "ess", "cor"), dfcor = FALSE){
if(is.null(model)) model <- describe(object, "model")
effect <- describe(object, "effect")
type <- match.arg(type)
## TODO: check what is sane for IV and what for within
# [1L] as has.intercept returns > 1 boolean for IV models # TODO: to check if this is sane
has.int <- if(model != "within") has.intercept(object)[1L] else FALSE
if (type == "rss"){
# approach: 1 - RSS / TSS
R2 <- if(has.int) {
1 - deviance(object, model = model) / tss(object, model = model)
} else {
# use non-centered (= non-demeaned) TSS
1 - deviance(object, model = model) / as.numeric(crossprod(pmodel.response(object, model = model)))
}
}
if(type == "ess"){
# approach: ESS / TSS
haty <- fitted(object, model = model)
R2 <- if(has.int) {
mhaty <- mean(haty)
ess <- as.numeric(crossprod(haty - mhaty))
tss <- tss(object, model = model)
ess / tss
}
else {
# use non-centered (=non-demeaned) ESS and non-centered TSS
ess <- as.numeric(crossprod(haty))
tss <- as.numeric(crossprod(pmodel.response(object, model = model)))
ess / tss
}
}
if(type == "cor"){
# approach: squared-correlation(dependent variable, predicted value), only for models with intercept
if(!has.int) warning("for models without intercept, type = \"cor\" may not be sane") # TODO: tbd if warning is good
# TODO: Check should this be for "cor" the original variable? This makes a difference for (at least) RE models!
# and on the fitted values which are not given by fitted() for RE models
# y <- pmodel.response(object, model = model, effect = effect)
# haty <- fitted(object, model = model, effect = effect)
y <- pmodel.response(object, model = "pooling")
haty <- fitted_exp.plm(object)
R2 <- cor(y, haty)^2
}
# this takes care of the intercept
# Still unclear, how the adjustment for within models should look like,
# i.e., subtract 1 for intercept or not
if(dfcor) R2 <- 1 - (1 - R2) * (length(resid(object)) - has.int) / df.residual(object)
return(R2)
}
# describe function: extract characteristics of plm model
describe <- function(x,
what = c("model", "effect", "random.method",
"inst.method", "transformation", "ht.method")){
what <- match.arg(what)
cl <- x$args
switch(what,
"model" = if(!is.null(cl$model))
cl$model else "within",
"effect" = if(!is.null(cl$effect))
cl$effect else "individual",
"random.method" = if(!is.null(cl$random.method))
cl$random.method else "swar",
"inst.method" = if(!is.null(cl$inst.method))
cl$inst.method else "bvk",
"transformation" = if(!is.null(cl$transformation))
cl$transformation else "d",
"ht.method" = if(!is.null(cl$ht.method))
cl$ht.method else "ht"
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.