R/lmrob.M.S.R

Defines functions lmrob.M.S splitFrame lmrob.lar

Documented in lmrob.lar lmrob.M.S splitFrame

lmrob.lar <- function(x, y, control = lmrob.control(), ...)
{
  ## LAR : Least Absolute Residuals -- i.e. L_1  M-estimate
  ## this function is identical to lmRob.lar of the robust package

  ## '...': to be called as  'init(**, mf)' from lmrob()
  x <- as.matrix(x)
  p <- ncol(x)
  n <- nrow(x)
  stopifnot(p > 0, n >= p, length(y) == n, is.numeric(control$rel.tol))
  storage.mode(x) <- "double"
  storage.mode(y) <- "double"
  bet0 <- 0.773372647623  ## bet0 = pnorm(0.75); only for normalizing scale=SIGMA
  tmpn <- double(n)
  tmpp <- double(p)

  z1 <- .Fortran(rllarsbi, ##-> ../src/rllarsbi.f
                 x,
                 y,
                 as.integer(n),
                 as.integer(p),
                 as.integer(n),
                 as.integer(n),
                 as.double(control$rel.tol),
                 NIT=integer(1),
                 K=integer(1),
                 KODE=integer(1),
                 SIGMA=double(1),
                 THETA=tmpn,
                 RS=tmpn,
                 SC1=tmpn,
                 SC2=tmpp,
                 SC3=tmpp,
                 SC4=tmpp,
                 BET0=as.double(bet0))[c("THETA","SIGMA","RS","NIT","KODE")]
  if (z1[5] > 1)
      stop("calculations stopped prematurely in rllarsbi\n",
           "(probably because of rounding errors).")
  names(z1) <- c("coefficients", "scale", "residuals", "iter", "status")
  ##           c("THETA",        "SIGMA", "RS",        "NIT",  "KODE")
  z1$converged <- TRUE
  length(z1$coefficients) <- p
  z1
}

splitFrame <- function(mf, x = model.matrix(mt, mf),
                       type = c("f","fi", "fii"))
{
    mt <- attr(mf, "terms")
    type <- match.arg(type)
    x <- as.matrix(x)
    p <- ncol(x)

    ## --- split categorical and interactions of categorical vars.
    ##     from continuous variables
    factors <- attr(mt, "factors")
    factor.idx <- attr(mt, "dataClasses") %in% c("factor", "character")
    if (!any(factor.idx)) ## There are no factors
        return(list(x1.idx = rep.int(FALSE, p), x1=matrix(NA_real_,nrow(x),0L), x2=x))
    switch(type,
           ## --- include interactions cat * cont in x1:
           fi = { factor.asgn <- which(factor.idx %*% factors > 0) },
           ## --- include also continuous variables that interact with factors in x1:
           ##     make sure to include interactions of continuous variables
           ##     interacting with categorical variables, too
           fii = { factor.asgn <- numeric(0)
                   factors.cat <- factors
                   factors.cat[factors.cat > 0] <- 1L ## fix triple+ interactions
                   factors.cat[, factor.idx %*% factors == 0] <- 0L
                   for (i in 1:ncol(factors)) {
                       comp <- factors[,i] > 0
                       ## if any of the components is a factor: include in x1 and continue
                       if (any(factor.idx[comp])) {
                           factor.asgn <- c(factor.asgn, i)
                       } else {
                           ## if there is an interaction of this term with a categorical var.
                           tmp <- colSums(factors.cat[comp,,drop=FALSE]) >= sum(comp)
                           if (any(tmp)) {
                               ## if no other continuous variables are involved
                               ## include in x1 and continue
                               ## if (identical(factors[!comp, tmp], factors.cat[!comp, tmp]))
                               if (!all(colSums(factors[!factor.idx & !comp, tmp, drop=FALSE]) > 0))
                                   factor.asgn <- c(factor.asgn, i)
                           }
                       }
                   } },
           ## --- do not include interactions cat * cont in x1:
           f = { factor.asgn <- which(factor.idx %*% factors & !(!factor.idx) %*% factors) },
           stop("unknown split type"))
    x1.idx <- attr(x, "assign") %in% c(0, factor.asgn) ## also include intercept
    names(x1.idx) <- colnames(x)

    ## x1: factors and (depending on type) interactions of / with factors
    ## x2: continuous variables
    list(x1 = x[,  x1.idx, drop=FALSE],
         x1.idx = x1.idx,
         x2 = x[, !x1.idx, drop=FALSE])
}

##' Compute M-S-estimator for linear regression ---> ../man/lmrob.M.S.Rd
lmrob.M.S <- function(x, y, control, mf, split = splitFrame(mf, x, control$split.type)) {
    if (ncol(split$x1) == 0) {
      warning("No categorical variables found in model. Reverting to S-estimator.")
      return(lmrob.S(x, y, control))
    }
    if (ncol(split$x2) == 0) {
        warning("No continuous variables found in model. Reverting to L1-estimator.")
        return(lmrob.lar(x, y, control))
    }
    ## this is the same as in lmrob.S():
    if (length(seed <- control$seed) > 0) { # not by default
	if(length(seed) < 3L || seed[1L] < 100L)
	    stop("invalid 'seed'. Must be compatible with .Random.seed !")
	if(!is.null(seed.keep <- get0(".Random.seed", envir = .GlobalEnv, inherits = FALSE)))
	    on.exit(assign(".Random.seed", seed.keep, envir = .GlobalEnv))
	assign(".Random.seed", seed, envir = .GlobalEnv)
    }
    x1 <- split$x1
    x2 <- split$x2
    storage.mode(x1) <- "double"
    storage.mode(x2) <- "double"
    storage.mode(y) <- "double"
    c.chi <- .psi.conv.cc(control$psi, control$tuning.chi)
    traceLev <- as.integer(control$trace.lev)
    z <- .C(R_lmrob_M_S, ## NB: If you change this, adapt ../inst/xtraR/m-s_fns.R
	    x1,
	    x2,
	    y,
            res = double(length(y)),
            n  =  length(y),
            p1 =  ncol(x1),
            p2 =  ncol(x2),
            nResample   = as.integer(control$nResample),
            max_it_scale= as.integer(control$maxit.scale),
            scale = double(1),
            b1 = double(ncol(x1)),
            b2 = double(ncol(x2)),
            tuning_chi = as.double(c.chi),
	    ipsi  =  .psi2ipsi(control$psi),
            bb    =  as.double(control$bb),
            K_m_s = as.integer(control$k.m_s),
            max_k = as.integer(control$k.max),
            rel_tol =   as.double(control$rel.tol),
	    inv_tol =   as.double(control$solve.tol),
	    scale_tol = as.double(control$scale.tol),
            zero.tol =  as.double(control$zero.tol),
            converged = logical(1),
            trace_lev = traceLev,
            ## well, these 3 are for the experts ... still why not arguments?
            orthogonalize=TRUE,
            subsample=TRUE,
            descent=TRUE,
            mts = as.integer(control$mts),
            ss = .convSs(control$subsampling)
            )[c("b1","b2", "res","scale", "converged")]

    conv <- z$converged
    ## FIXME? warning  in any case if 'conv' is not ok ??
    if(!conv && traceLev) warning("M-S estimator did *not* converge")
    ## coefficients :
    idx <- split$x1.idx
    cf <- numeric(length(idx))
    cf[ idx] <- z$b1
    cf[!idx] <- z$b2
    ## set method argument in control
    control$method <- 'M-S'
    obj <- list(coefficients = cf, scale = z$scale, residuals = z$res,
                rweights = lmrob.rweights(z$res, z$scale, control$tuning.chi, control$psi),
                ## ../src/lmrob.c : m_s_descent() notes that convergence is *not* guaranteed
                converged = TRUE,
                descent.conv = conv, # the real truth ..
                control = control)
    if (control$method %in% control$compute.outlier.stats)
        obj$ostats <- outlierStats(obj, x, control)
    obj
}

Try the robustbase package in your browser

Any scripts or data that you put into this service are public.

robustbase documentation built on Nov. 1, 2024, 3 p.m.