Nothing
lmrob.lar <- function(x, y, control = lmrob.control(), ...)
{
## LAR : Least Absolute Residuals -- i.e. L_1 M-estimate
## this function is identical to lmRob.lar of the robust package
## '...': to be called as 'init(**, mf)' from lmrob()
x <- as.matrix(x)
p <- ncol(x)
n <- nrow(x)
stopifnot(p > 0, n >= p, length(y) == n, is.numeric(control$rel.tol))
storage.mode(x) <- "double"
storage.mode(y) <- "double"
bet0 <- 0.773372647623 ## bet0 = pnorm(0.75); only for normalizing scale=SIGMA
tmpn <- double(n)
tmpp <- double(p)
z1 <- .Fortran(rllarsbi, ##-> ../src/rllarsbi.f
x,
y,
as.integer(n),
as.integer(p),
as.integer(n),
as.integer(n),
as.double(control$rel.tol),
NIT=integer(1),
K=integer(1),
KODE=integer(1),
SIGMA=double(1),
THETA=tmpn,
RS=tmpn,
SC1=tmpn,
SC2=tmpp,
SC3=tmpp,
SC4=tmpp,
BET0=as.double(bet0))[c("THETA","SIGMA","RS","NIT","KODE")]
if (z1[5] > 1)
stop("calculations stopped prematurely in rllarsbi\n",
"(probably because of rounding errors).")
names(z1) <- c("coefficients", "scale", "residuals", "iter", "status")
## c("THETA", "SIGMA", "RS", "NIT", "KODE")
z1$converged <- TRUE
length(z1$coefficients) <- p
z1
}
splitFrame <- function(mf, x = model.matrix(mt, mf),
type = c("f","fi", "fii"))
{
mt <- attr(mf, "terms")
type <- match.arg(type)
x <- as.matrix(x)
p <- ncol(x)
## --- split categorical and interactions of categorical vars.
## from continuous variables
factors <- attr(mt, "factors")
factor.idx <- attr(mt, "dataClasses") %in% c("factor", "character")
if (!any(factor.idx)) ## There are no factors
return(list(x1.idx = rep.int(FALSE, p), x1=matrix(NA_real_,nrow(x),0L), x2=x))
switch(type,
## --- include interactions cat * cont in x1:
fi = { factor.asgn <- which(factor.idx %*% factors > 0) },
## --- include also continuous variables that interact with factors in x1:
## make sure to include interactions of continuous variables
## interacting with categorical variables, too
fii = { factor.asgn <- numeric(0)
factors.cat <- factors
factors.cat[factors.cat > 0] <- 1L ## fix triple+ interactions
factors.cat[, factor.idx %*% factors == 0] <- 0L
for (i in 1:ncol(factors)) {
comp <- factors[,i] > 0
## if any of the components is a factor: include in x1 and continue
if (any(factor.idx[comp])) {
factor.asgn <- c(factor.asgn, i)
} else {
## if there is an interaction of this term with a categorical var.
tmp <- colSums(factors.cat[comp,,drop=FALSE]) >= sum(comp)
if (any(tmp)) {
## if no other continuous variables are involved
## include in x1 and continue
## if (identical(factors[!comp, tmp], factors.cat[!comp, tmp]))
if (!all(colSums(factors[!factor.idx & !comp, tmp, drop=FALSE]) > 0))
factor.asgn <- c(factor.asgn, i)
}
}
} },
## --- do not include interactions cat * cont in x1:
f = { factor.asgn <- which(factor.idx %*% factors & !(!factor.idx) %*% factors) },
stop("unknown split type"))
x1.idx <- attr(x, "assign") %in% c(0, factor.asgn) ## also include intercept
names(x1.idx) <- colnames(x)
## x1: factors and (depending on type) interactions of / with factors
## x2: continuous variables
list(x1 = x[, x1.idx, drop=FALSE],
x1.idx = x1.idx,
x2 = x[, !x1.idx, drop=FALSE])
}
##' Compute M-S-estimator for linear regression ---> ../man/lmrob.M.S.Rd
lmrob.M.S <- function(x, y, control, mf, split = splitFrame(mf, x, control$split.type)) {
if (ncol(split$x1) == 0) {
warning("No categorical variables found in model. Reverting to S-estimator.")
return(lmrob.S(x, y, control))
}
if (ncol(split$x2) == 0) {
warning("No continuous variables found in model. Reverting to L1-estimator.")
return(lmrob.lar(x, y, control))
}
## this is the same as in lmrob.S():
if (length(seed <- control$seed) > 0) { # not by default
if(length(seed) < 3L || seed[1L] < 100L)
stop("invalid 'seed'. Must be compatible with .Random.seed !")
if(!is.null(seed.keep <- get0(".Random.seed", envir = .GlobalEnv, inherits = FALSE)))
on.exit(assign(".Random.seed", seed.keep, envir = .GlobalEnv))
assign(".Random.seed", seed, envir = .GlobalEnv)
}
x1 <- split$x1
x2 <- split$x2
storage.mode(x1) <- "double"
storage.mode(x2) <- "double"
storage.mode(y) <- "double"
c.chi <- .psi.conv.cc(control$psi, control$tuning.chi)
traceLev <- as.integer(control$trace.lev)
z <- .C(R_lmrob_M_S, ## NB: If you change this, adapt ../inst/xtraR/m-s_fns.R
x1,
x2,
y,
res = double(length(y)),
n = length(y),
p1 = ncol(x1),
p2 = ncol(x2),
nResample = as.integer(control$nResample),
max_it_scale= as.integer(control$maxit.scale),
scale = double(1),
b1 = double(ncol(x1)),
b2 = double(ncol(x2)),
tuning_chi = as.double(c.chi),
ipsi = .psi2ipsi(control$psi),
bb = as.double(control$bb),
K_m_s = as.integer(control$k.m_s),
max_k = as.integer(control$k.max),
rel_tol = as.double(control$rel.tol),
inv_tol = as.double(control$solve.tol),
scale_tol = as.double(control$scale.tol),
zero.tol = as.double(control$zero.tol),
converged = logical(1),
trace_lev = traceLev,
## well, these 3 are for the experts ... still why not arguments?
orthogonalize=TRUE,
subsample=TRUE,
descent=TRUE,
mts = as.integer(control$mts),
ss = .convSs(control$subsampling)
)[c("b1","b2", "res","scale", "converged")]
conv <- z$converged
## FIXME? warning in any case if 'conv' is not ok ??
if(!conv && traceLev) warning("M-S estimator did *not* converge")
## coefficients :
idx <- split$x1.idx
cf <- numeric(length(idx))
cf[ idx] <- z$b1
cf[!idx] <- z$b2
## set method argument in control
control$method <- 'M-S'
obj <- list(coefficients = cf, scale = z$scale, residuals = z$res,
rweights = lmrob.rweights(z$res, z$scale, control$tuning.chi, control$psi),
## ../src/lmrob.c : m_s_descent() notes that convergence is *not* guaranteed
converged = TRUE,
descent.conv = conv, # the real truth ..
control = control)
if (control$method %in% control$compute.outlier.stats)
obj$ostats <- outlierStats(obj, x, control)
obj
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.