Nothing
library(robustbase)
## instead of relying on system.file("test-tools-1.R", package="Matrix"):
doExtras <- robustbase:::doExtras()
SysI <- Sys.info()
## IGNORE_RDIFF_BEGIN
for(f in system.file("xtraR", c("test-tools.R",
"platform-sessionInfo.R"), # -> moreSessionInfo()
package = "robustbase", mustWork=TRUE)) {
cat("source(",f,"):\n", sep="") ; source(f)
}
doExtras
moreSessionInfo(print. = "all")
(arch <- SysI[["machine"]]) # needed to distinguish platforms further down
isMac <- SysI[["sysname"]] == "Darwin"
isSun <- SysI[["sysname"]] == "SunOS"
.M <- .Machine; str(.M[grep("^sizeof", names(.M))]) ## differentiate long-double..
noLD16 <- (.M$sizeof.longdouble != 16)
if(arch == "x86_64") {
if(noLD16)
arch <- paste0(arch, "--no-long-double")
else if(identical(osVersion, "Fedora 30 (Thirty)"))
arch <- paste0(arch, "_F30")
# else keep 'arch' unchanged
}
## IGNORE_RDIFF_END
#### Poisson examples from Eva Cantoni's paper
### Using Possum Data
### ================
data(possumDiv)
## Try to follow closely Cantoni & Ronchetti(2001), JASA
dim(X <- possum.mat[, -1]) # 151 13
str(y <- possum.mat[, "Diversity"])
##--- reduce the matrix from singularity ourselves:
X. <- possum.mat[, -c(1, match(c("E.nitens", "NW-NE"), colnames(possum.mat)))]
dim(X.)# 151 11
## "classical via robust: c = Inf :
Inf. <- 1e5 ## --- FIXME
## The following used to fail because glm.fit() returns NA coefficients
## now fine .. keep this as test!
glm.cr <- glmrob(y ~ X, family = "poisson", tcc = Inf.)
(scr <- summary(glm.cr))
scl <- summary(glm.cl <- glm (Diversity ~ . , data=possumDiv, family=poisson))
sc2 <- summary(glm.c2 <- glmrob(Diversity ~ . , data=possumDiv, family=poisson, tcc = Inf.))
MMg <- model.matrix(glm.cl)
assert.EQ(coef(scl), coef(sc2), tol = 6e-6, giveRE=TRUE) # 1.37e-6
dnms <- list(colnames(MMg), c("Estimate", "Std. Error", "z value", "Pr(>|z|)"))
cf.sc <- array(c(-0.9469439, 0.01192096, -0.2724059, 0.04022862, 0.03988606, 0.07173483,
0.01763833, -0.01534376, 0.1149216, 0.06675529, 0.1169463, -0.4889071,
## SE
0.2655031, 0.02194661, 0.2859216, 0.01120463, 0.01438884, 0.03814053,
0.01059779, 0.1916126, 0.2724202, 0.1901612, 0.1902903, 0.2474653,
## z val
-3.566603, 0.5431798, -0.9527294, 3.590356, 2.772014, 1.880803,
1.664341, -0.08007701, 0.421854, 0.3510457, 0.6145675, -1.975659,
## P val
0.0003616393, 0.587006, 0.3407272, 0.0003302263, 0.00557107, 0.05999869,
0.09604432, 0.936176, 0.6731316, 0.7255541, 0.5388404, 0.04819339),
dim = c(12L, 4L), dimnames = dnms)
assert.EQ(cf.sc, coef(sc2), tol = 4e-7, giveRE=TRUE) # 8.48e-8
## c = 2.0
summary(g2 <- glmrob(Diversity ~ . , data=possumDiv, family=poisson, tcc = 2.0, trace=TRUE))
## c = 1.6
glm.r <- glmrob(Diversity ~ . , data=possumDiv, family=poisson, tcc = 1.6, trace=TRUE)
(s.16 <- summary(glm.r))
str(glm.r)
## Now with *smaller* X (two variables less):
glm.c2 <- glmrob(y ~ X., family = "poisson", tcc = Inf.)
summary(glm.c2)
## c = 1.6, x-weights, as in Cantoni-Ronchetti
glm.r2 <- glmrob(y ~ X., family = "poisson",
tcc = 1.6, weights.on.x = "hat")
## Now the same, for the direct possum data (no matrix),
## This indeed gives the same coefficients as in
## Table 3 of Cantoni+Ronchetti(2001): .. (tech.rep.):
glm.r2. <- glmrob(Diversity ~ ., family = "poisson", data=possumDiv,
tcc = 1.6, weights.on.x = "hat", acc = 1e-15)
## here iterate till convergence (acc = 10^(-15))
(sglm.r2 <- summary(glm.r2.))
## This is too accurate for S.E. (but we have converged to end)
cf2 <- matrix(c(-0.898213938628341, 0.269306882951903,
0.00717220104127189, 0.0224349606070713,
-0.25335520175528, 0.288588183720387,
0.0403970350911325, 0.0113429514237665,
0.0411096703375411, 0.0145996036305452,
0.0730250489306713, 0.0386771060643486,
0.0176994176433365, 0.0107414247342375,
-0.0289935051669504,0.194215229266707,
0.149521144883774, 0.271648514202971,
0.0503262879663932, 0.191675979065398,
0.0909870068741749, 0.192192515800464,
-0.512247626309172, 0.250763990619973), 12,2, byrow=TRUE)
assert.EQ(cf2, unname(coef(sglm.r2)[, 1:2]), tol = 1e-9, giveRE=TRUE)#-> show : ~ 1.46e-11
stopifnot(abs(glm.r2.$iter - 18) <= 1) # 18 iterations on 32-bit (2008)
## MT estimator -- "quick" examples
if(!robustbase:::doExtras()) {
cat('Time elapsed: ', proc.time(),'\n') # for ``statistical reasons''
quit()
}
## if ( doExtras ) -----------------------------------------------------
X1 <- cbind(1, X.)
if(FALSE) ## for debugging ...
options(warn = 1, error=recover)
options(nwarnings = 1000) # def. 50
RNGversion("3.5.0") ## [TODO: adapt to "current" RNG settings]
set.seed(57)
showSys.time(
## m1 <- glmrobMT(x=X1, y=y)
m1 <- glmrob(Diversity ~ ., data=possumDiv, family=poisson, method="MT")
)
summary(warnings())
stopifnot(m1$converged)
assert.EQ(m1$initial,
c(-0.851594294907422, -0.0107066895370536, -0.226958540075445, 0.0355906625338308,
0.048010654640958, 0.0847493155436896, 0.0133604488401352, -0.024115201062159,
0.0270535337324518, 0.146022135657894, -0.00751380783260833, -0.417638086169033)
, tol = 1e-13, check.attributes=FALSE, giveRE=TRUE)
dput(signif(unname(coef(m1)), 11)) ## -->
## Something strange going on: R CMD check is different from interactive R, here.
## ???? [I see that the byte compiler is not listed in sessionInfo]
## In any case, take the dput(.) output from the *.Rout[.fail] file
## 2015-07-21: on 32-bit, the results *change* when re-run ???
##------- different results on different platforms
beta1 <- list(i686 =
## old florence:
## c(-0.83715700394, 0.0085488694315, -0.16734609346, 0.040965601691,
## 0.042387113444, 0.063146240793, 0.018632137866, -0.0062886781262,
## 0.11466679192, 0.091457894347, -0.025009954018, -0.66867971209)
## for a "moment": f32sfs-2; 2015-07-20
## c(-0.83818366695, 0.0085885492587, -0.1680548609, 0.040969491636,
## 0.042401438906, 0.063170238296, 0.018647880253, -0.0058039548495,
## 0.11500468542, 0.091940159895, -0.024804291737, -0.66861710581)
## f32sfs-2; 2015-07-21; in "R CMD check"/BATCH, *not* interactive
c(-0.83701057367, 0.0085408263511, -0.16692955779, 0.040980220489,
0.042389760873, 0.063145608346, 0.018632314682, -0.0062819674369,
0.11513144785, 0.091268054568, -0.025531439815, -0.66981350787)
## f32sfs-2; 2015-07-21, in R-devel, several times in a row:
## c(-0.83734949811, 0.008554484224, -0.16727333284, 0.040980350692,
## 0.042391751765, 0.06315585848, 0.018633222478, -0.0062978140762,
## 0.11509071086, 0.091463771235, -0.025113314023, -0.66955433495)
, "x86_64" =
c(-0.83723213945, 0.0085385261915, -0.16697112315, 0.040985126003,
0.042400738973, 0.063168847366, 0.01863253681, -0.0064477807228,
0.11488937188, 0.091283185006, -0.025627390293, -0.66995658693)
, "x86_64--no-long-double" =
c(-0.83710423989, 0.0085428949874, -0.16713845989, 0.040973904414,
0.042391910971, 0.063159426394, 0.018629240073, -0.006362108938,
0.1145563969, 0.091490891317, -0.025378427464, -0.66943593439)
, "x86_64_F30" =
c(-0.83703991366, 0.008536691385, -0.16707196217, 0.040980171987,
0.042388781206, 0.063132162167, 0.018634264818, -0.0064298708197,
0.11486525895, 0.091433901799, -0.025384338265, -0.66920847831)
)
## just FYI: difference 32-bit vs 64-bit:
assert.EQ(beta1[[1]], beta1[[2]], tol = 0.004, check.attributes=FALSE, giveRE=TRUE)
## Mean relative difference: 0.00142 [~ 2013-12]; 0.00273 [f32sfs-2; 2015-08]; then (R-devel 2015-07-21): 0.000916
assert.EQ(beta1[[2]], beta1[[3]], tol = 0.002, check.attributes=FALSE, giveRE=TRUE)
## Mean relative difference: 0.00082849 [2014-11]
## when bypassing BLAS in matprod() vvvvv seen 0.001385 [Lx 64b]:
assert.EQ(coef(m1), beta1[[arch]], tol = 0.002, # typically 1e-10 is ok !!
check.attributes=FALSE, giveRE=TRUE)
## The same, with another seed:
set.seed(64)
showSys.time(
## m2 <- glmrobMT(x=X1, y=y)
m2 <- glmrob(Diversity ~ ., data=possumDiv, family=poisson, method="MT")
)
summary(warnings())
stopifnot(m2$converged)
if(FALSE)
dput(signif(unname(m2$initial), 13)) ## -->
assert.EQ(m2$initial, ## so this is *not* platform (32bit/64bit) dependent:
c(-1.204304813829, 0.02776038445201, -0.3680174045842, 0.04325746912892,
0.03895315289169, 0.04537145479989, 0.02847987541025, 0.07073207523212,
0.355491639539, 0.1822955449528, 0.1323720331562, -0.3419939094877)
, tol = 1e-12, check.attributes=FALSE, giveRE=TRUE)
dput(signif(unname(coef(m2)), 11)) ## -->
beta2 <- list(i686 =
## florence?, Nov. 2014 (or even Dec 2013)
## c(-0.83698669149, 0.0085587296184, -0.16778044558, 0.040960021262,
## 0.042402954975, 0.063188868629, 0.018630275088, -0.0061015509403,
## 0.11385896307, 0.090966386294, -0.02572887737, -0.66945784056)
## f32sfs-2, July 2015, "R CMD .." (non-interactive!):
c(-0.83644647378, 0.0085365454367, -0.16770422458, 0.040958113098,
0.04238796628, 0.063174324485, 0.018618360015, -0.0062357940483,
0.11380146782, 0.090988141307, -0.025500338638, -0.66949122367)
## f32sfs-2, July 2015, interactive
## c(-0.83675287265, 0.0085383816807, -0.16763418359, 0.040968861778,
## 0.042399340988, 0.063148815999, 0.018624181637, -0.0061320761338,
## 0.11423331389, 0.0912474233, -0.025508101291, -0.66971416165)
, "x86_64" =
c(-0.83687097624, 0.0085341676033, -0.1674299545, 0.040968820903,
0.042397459287, 0.063159075944, 0.018625582804, -0.0063140636571,
0.11426134017, 0.091317308575, -0.025373078819, -0.66957444238)
, "x86_64--no-long-double" = # (2024-09: updated from Lx 64b-noLD)
c(-0.83708963633, 0.0085786151508, -0.16814236036, 0.040958368946,
0.042399661659, 0.063166875696, 0.018634273269, -0.0056619915417,
0.1142614614, 0.091055956969, -0.025688991294, -0.66932060023)
, "x86_64_F30" = ## Fedora 30, R-devel (2019-06-13):
c(-0.83651130836, 0.0085272636623, -0.16777225909, 0.040958046751,
0.042398611622, 0.063169934556, 0.018622060538, -0.0067041556052,
0.11358762483, 0.090950270043, -0.025393966426, -0.66916946118)
)
## just FYI: difference 32-bit vs 64-bit:
assert.EQ(beta2[[1]], beta2[[2]], tol = 0.001, check.attributes=FALSE, giveRE=TRUE)
## Mean relative difference: 0.0009487 [~2013-12]; .0008741591 [2024-09]
assert.EQ(beta2[[2]], beta2[[3]], tol = 0.004, check.attributes=FALSE, giveRE=TRUE)
## Mean relative difference: 0.0005119 [2014-11]; 0.0011933 2024-09
## when bypassing BLAS in matprod() vvvvv seen 0.0002766 [Lx 64b], 0.001328 [Lx 64b-noLD]
assert.EQ(coef(m2), beta2[[arch]], tol = 0.0008 * (if(noLD16) 10 else 1), # typically 1e-10 is ok !!
check.attributes=FALSE, giveRE=TRUE)
## slight changes of algorithm often change the above by ~ 4e-4 !!!
summary(warnings())
###---- Model Selection -----
## (not yet) [ MM had this in ../../robGLM1/tests/quasi-possum.R ]
cat('Time elapsed: ', proc.time(),'\n') # for ``statistical reasons''
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.