| as.dist.kernelsom | Compute all the distances between prototypes in a fitted... |
| as.dist.relationalsom | Compute all the distances between prototypes in a fitted... |
| as.dist.somnum | Compute all the distances between prototypes in a fitted... |
| as.kernelmatrix | Turn a standard matrix into a Kernel matrix |
| batchkmeans | Generic K-means Clustering |
| batchkmeans.default | K-means Clustering for vector data |
| batchkmeans.kenelmatrix | Kernel K-means Clustering |
| batchsom | Generic Self-Organising Map fitting function |
| batchsom.default | Fit a Self-Organising Map to vector data |
| batchsom.dist | Fit a Self-Organising Map to dissimilarity data |
| batchsom.kernelmatrix | Fit a Kernel Self-Organising Map to some data |
| colorCode | Data coloring via a Self-Organising Map |
| componentPlane | Component Planes |
| distance.grid | Build a surface that represents prototype distances in a... |
| error.kaskilagus | Kaski and Lagus' error measure for Self-Organising Maps |
| error.kaskilagus.kernelsom | Kaski and Lagus' error measure for Kernel Self-Organising... |
| error.kaskilagus.relationalsom | Kaski and Lagus' error measure for Relational Self-Organising... |
| error.kaskilagus.somnum | Kaski and Lagus' error measure for Self-Organising Maps on... |
| error.quantisation | Quantisation error for a Self-Organising Map |
| error.quantisation.kernelsom | Quantisation error for a Kernel Self-Organising Map |
| error.quantisation.relationalsom | Quantisation error for a Relational Self-Organising Map |
| error.quantisation.somnum | Quantisation error for a Self-Organising Map fitted on vector... |
| grid2lines | Self-Organising Map grid |
| hitMap | Clustering Hit Map |
| identify.somgrid | Identify a grid cell in a grid display |
| mapToUnit | Map additional data to a Self-Organising Map |
| plot.som | Plot cell contents of a Self-Organising Map |
| plot.somgrid | Plot a Self-Organising Map prior structure |
| plot.sompdist | Plot distances between prototypes of a fitted Self-Organising... |
| plot.somtune | Plot SOM parameter tuning results |
| predict.kernelsom | Map new data to a fitted Kernel Self-Organising Map |
| predict.relationalsom | Map new data to a fitted Relational Self-Organising Map |
| predict.somnum | Map new data to a fitted Self-Organising Map for vector data |
| print.som | Describe a fitted Self-Organising Map |
| prototype.distances | Compute distances between neighbouring prototypes in a fitted... |
| somgrid | Create a prior structure for a self-organising map |
| sominit.pca | Initialise the prototypes of a SOM with PCA |
| sominit.pca.default | Initialise the prototypes of a SOM with PCA |
| sominit.pca.dist | Initialise the prototypes of a dissimilarity SOM with... |
| sominit.pca.kernelmatrix | Initialise the prototypes of a kernel SOM with kernel PCA |
| sominit.random | Initialise the prototypes of a SOM via some random sample |
| som.tune | Parameter tuning for Self-Organising Maps |
| som.tunecontrol | Control parameters for the som.tune function |
| umatrix | U-Matrix |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.