error.kaskilagus.somnum: Kaski and Lagus' error measure for Self-Organising Maps on...

Description Usage Arguments Value Author(s) References See Also Examples

Description

Compute an error measure of a fitted Self-Organising Maps defined by S. Kaski and K. Lagus. For vector data, the error combines for each observation its quantisation error and a graph based distance in the prior structure compute with the Euclidean distance between the prototypes (in the data space).

Usage

1
2
## S3 method for class 'somnum'
error.kaskilagus(som, newdata,...)

Arguments

som

an object of class "somnum"

newdata

an optional matrix or a data frame of observations

...

not used

Value

If newdata is not given, the function returns the error made by the fitted som on the data used to fit it. Those data must have been saved in the som object (this is the default behavior of batchsom). When newdata is specified, the function returns the error made by the fitted som on the corresponding data.

Author(s)

Fabrice Rossi

References

Kaski, S. and Lagus, K. (1996) Comparing self-organizing maps, in: C. von der Malsburg, W. von Seelen, J. Vorbrüggen, B. Sendhoff (eds.), Proceedings of International Conference on Artificial Neural Networks (ICANN'96, Bochum, Germany), vol. 1112 of Lecture Notes in Computer Science, Springer, pp. 809–814.

See Also

error.quantisation.somnum, som.tunecontrol

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
data(iris)
# scaling
data <- scale(iris[1:4])

# a medium hexagonal grid
sg <- somgrid(xdim=15,ydim=15,topo="hex")

# choose a good SOM via Kaski and Lagus' error measure
st <- som.tune(data,sg,som.tunecontrol(sg,criterion=error.kaskilagus))
som <- st$best.som

# and display the prototypes
plot(som)

yasomi documentation built on May 2, 2019, 5:59 p.m.