Description Usage Arguments Value Author(s) References See Also Examples
Compute an error measure of a fitted Self-Organising Maps defined by S. Kaski and K. Lagus. For vector data, the error combines for each observation its quantisation error and a graph based distance in the prior structure compute with the Euclidean distance between the prototypes (in the data space).
1 2 | ## S3 method for class 'somnum'
error.kaskilagus(som, newdata,...)
|
som |
an object of class |
newdata |
an optional matrix or a data frame of observations |
... |
not used |
If newdata
is not given, the function returns the error made by
the fitted som on the data used to fit it. Those data must have been
saved in the som object (this is the default behavior of
batchsom
). When newdata
is specified, the
function returns the error made by the fitted som on the corresponding
data.
Fabrice Rossi
Kaski, S. and Lagus, K. (1996) Comparing self-organizing maps, in: C. von der Malsburg, W. von Seelen, J. Vorbrüggen, B. Sendhoff (eds.), Proceedings of International Conference on Artificial Neural Networks (ICANN'96, Bochum, Germany), vol. 1112 of Lecture Notes in Computer Science, Springer, pp. 809–814.
error.quantisation.somnum
, som.tunecontrol
1 2 3 4 5 6 7 8 9 10 11 12 13 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.