Nothing
##--------------------------------------------------------------------------
## Author : Alexandre Brouste
## Project: Yuima
##--------------------------------------------------------------------------
##--------------------------------------------------------------------------
## Input mesh : mesh grid where the fBm is evaluated
## H : self-similarity parameter
## dim : valued in R^dim
##
##
## Output : simulation of a standard fractional Brownian noise
## for the mesh grid evaluation by Choleki s
## decomposition of the covariance matrix of the fGn.
##--------------------------------------------------------------------------
##--------------------------------------------------------------------------
## Complexity O(N^3) via method chol.... mais mieux pour dim different
## Taille memoire N^2
## -------------------------------------------------------------------------
CholeskyfGn <- function( mesh , H , dim ){
H2 <- 2*H
mesh<-mesh[[1]]
N<-length(mesh)-2 # N+1 is the size of the fGn sample to be simulated
fGn<-matrix(0,dim,N+1)
matcov <- matrix(0,N+1,N+1) # Covariance matrix of the fGn
for (i in (1:(N+1))) {
j <- i:(N+1)
matcov[i, j]<- 0.5 * (abs(mesh[i+1]-mesh[j])^H2 + abs(mesh[i]-mesh[j+1])^H2 - abs(mesh[i] - mesh[j])^H2-abs(mesh[i+1] - mesh[j+1])^H2)
matcov[j, i]<- matcov[i, j]
}
L <- chol(matcov)
for (k in 1:dim){
Z <- rnorm(N+1)
fGn[k,] <- t(L) %*% Z
}
return(fGn)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.