Nothing
wald_DTU_test_FULL = function(f, l, exon_id, N_1, N_2, R, burn_in, mean_log_precision = 0, sd_log_precision = 10, theshold_pval = 0.1){
K = nrow(exon_id) # nr of transcripts
chain = MCMC_chain_FULL(f = f, l = l, exon_id = exon_id, N_1 = N_1, N_2 = N_2, R = R, K = K,
burn_in = burn_in, mean_log_precision = mean_log_precision, sd_log_precision = sd_log_precision)
if(chain[[2]][1] == 0){ # IF the first chain didn't converge (3 times), return NULL result:
return( list(p.vals = NA, convergence = chain[[2]] ) )
}
pvals_res = compute_pval_FULL( A = chain[[1]][[1]], B = chain[[1]][[2]], K = K, N = N_1 + N_2)
if(is.na(pvals_res[[1]][1]) == FALSE){ # If NA, I output a warning and redo the MCMC
if( pvals_res[[1]][1] > theshold_pval ){ # if p.val > 0.1 I return the p.vals
mean_prec = vapply(chain[[4]], mean, FUN.VALUE = numeric(1))
sd_prec = vapply(chain[[4]], sd, FUN.VALUE = numeric(1))
pvals_res[[1]] = c(pvals_res[[1]], mean_prec, sd_prec)
return( list(p.vals = pvals_res, convergence = chain[[2]]) ) # return the convergence result too (to check they are all converged with reasonable burn-in).
}
}
# If I didn't return the output yet it means either: 1) p.val is NA (never so far) 2) p.val < threshold (0.1 by default)/
chain_2 = MCMC_chain_FULL(f = f, l = l, exon_id = exon_id, N_1 = N_1, N_2 = N_2, R = R, K = K,
burn_in = burn_in, mean_log_precision = mean_log_precision, sd_log_precision = sd_log_precision)
# if chain_2 converged, I add it to the first one, otherwise I don't:
if(chain_2[[2]][1] == 0){ # IF the second chain didn't converge (3 times), return the result (already computed) from the first one:
mean_prec = vapply(chain[[4]], mean, FUN.VALUE = numeric(1))
sd_prec = vapply(chain[[4]], sd, FUN.VALUE = numeric(1))
pvals_res[[1]] = c(pvals_res[[1]], mean_prec, sd_prec)
return( list(p.vals = pvals_res, convergence = chain[[2]]) ) # return the convergence result too (to check they are all converged with reasonable burn-in).
}
# I merge the two chains computed independently and return the pvals computed on the two chains merged together.
pvals_res = compute_pval_FULL( A = rbind( chain[[1]][[1]], chain_2[[1]][[1]]), B = rbind( chain[[1]][[2]], chain_2[[1]][[2]]), K = K, N = N_1 + N_2)
chain[[4]][[1]] = c(chain[[4]][[1]], chain_2[[4]][[1]])
chain[[4]][[2]] = c(chain[[4]][[2]], chain_2[[4]][[2]])
mean_prec = vapply(chain[[4]], mean, FUN.VALUE = numeric(1))
sd_prec = vapply(chain[[4]], sd, FUN.VALUE = numeric(1))
pvals_res[[1]] = c(pvals_res[[1]], mean_prec, sd_prec)
list(p.vals = pvals_res, convergence = chain[[2]]) # return the convergence result too (to check they are all converged with reasonable burn-in).
}
# FIRST_chain needed to keep track of the times I run the MCMC (due to convergence issues):
MCMC_chain_FULL = function(f, l, exon_id, N_1, N_2, R, K, burn_in, mean_log_precision, sd_log_precision,
FIRST_chain = 1){
one_transcript = colSums(exon_id) == 1
res = .Call(`_BANDITS_Rcpp_Unique`, K, R, burn_in, N_1, N_2, mean_log_precision, sd_log_precision,
l, f, exon_id, one_transcript)
seq. = round( seq.int(1, R, length.out = 10^4 ) ) # thin if R > 10^4 (by construction R >= 10^4)
convergence = my_heidel.diag(res[[3]][seq.], R = length(seq.), by. = length(seq.)/10, pvalue = 0.01)
# output:
# Stationarity test passed (1) or not (0);
# start iteration (it'd be > burn_in);
# p-value (for the Stationarity test).
if(convergence[1] == 1){ # if it converged:
if(convergence[2] > 1){ # remove burn-in estimated by heidel.diag (which is, AT MOST, half of the chain):
res[[1]] = res[[1]][seq.,][-seq_len(convergence[2]-1),]
res[[2]] = res[[2]][seq.,][-seq_len(convergence[2]-1),]
res[[4]] = res[[4]][seq.][-seq_len(convergence[2]-1)]
res[[5]] = res[[5]][seq.][-seq_len(convergence[2]-1)]
}else{ # if convergence[2] == 1, seq. has altready been defined above.
if(R > 10^4){ # thin if R > 10^4
res[[1]] = res[[1]][seq.,]
res[[2]] = res[[2]][seq.,]
res[[4]] = res[[4]][seq.]
res[[5]] = res[[5]][seq.]
}
}
}else{ # IF not converged, RUN a second chain (once only):
if(FIRST_chain < 3){ # if first or second chain re-run again:
# message("the first chain did NOT converge, I run a second one:")
return( MCMC_chain_FULL(f, l, exon_id, N_1, N_2, R, K, burn_in, mean_log_precision, sd_log_precision, FIRST_chain = FIRST_chain + 1) )
}else{ # if I ran 3 chains already and none of them converged, return convergence failure message:
return(list(NaN, convergence, FIRST_chain))
}
}
# thin results to return 10^4 iterations.
# thin if R > 10^4 (to return 10^4 values).
# save whether it's the first run or not (i.e. whether the convergence test failed).
list( res[seq_len(2)], convergence, FIRST_chain, res[c(4,5)] ) # I return the list of MCMC chains, excluding the burn-in
}
# sometimes R is NULL!
# check why.
compute_pval_FULL = function(A, B, K, N){
R = nrow(A)
A = A[sample.int(R, R),] # n indicates the nr of elements of the chain (exluded burn-in)
gamma = A - B
CV = cov(gamma) # cov is 20ish times faster than posterior mode (very marginal cost).
mode = apply(gamma, 2, find.mode, adjust = 10)
mode_A = colSums(A) # find.mode (mode) or sum (mean)
mode_A = mode_A/sum(mode_A)
sd_A = sqrt(diag(var(A)))
mode_B = colSums(B) # find.mode (mode) or sum (mean)
mode_B = mode_B/sum(mode_B)
sd_B = sqrt(diag(var(B)))
# find.mode is 20-30 % faster than posterior.moode
# transcript level test:
trancript_res = 1-pchisq(mode^2/diag(CV), df = 1)
p = K-1
p_value = vapply(seq_len(K), function(k){
sel = seq_len(K)[-k]
# Normal (classical Wald test)
stat = t(mode[sel]) %*% ginv(CV[sel, sel], tol = 0) %*% mode[sel]
1-pchisq(stat, df = K-1)
}, FUN.VALUE = numeric(1))
# I return 4 versions of the p.value:
# 1) an average of the K p.values
# 2) the p.value obtained removing the smallest difference (min(gamma))
# 3) the p.value obtained removing the (overall summing the two groups) most lowly expressed transcript.
# 4) a randomly selected p_value
#sel_1 = which.min(abs(mode)) # min diff between pi's in A and B.
#sel_2 = which.min(mode_A + mode_B) # most lowly expressed transcript overall in A + B.
#ran = sample.int(K, 1)
# I also record if the dominant transcript is inverted between the two conditions.
# Inverted defined w.r.t the posterior mode.
inverted = which.max(mode_A) != which.max(mode_B)
# In this case I can also consider less stringent constraints such as the Chi_2 maybe.
# Score to highlight the impact of DS:
# max_diff_pi_T = max(abs(mode_A - mode_B));
top2_diff_pi_T = sum(sort(abs(mode_A - mode_B), decreasing = TRUE)[seq_len(2)])
list( c( mean(p_value), # p_value[sel_1], p_value[sel_2], p_value[ran],
inverted, # max_diff_pi_T,
top2_diff_pi_T ),
trancript_res,
mode_A, mode_B, sd_A, sd_B)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.