Nothing
infer_only = function(f, l, exon_id, N, R, burn_in, mean_log_precision = 0, sd_log_precision = 10){
K = nrow(exon_id) # nr of transcripts
chain = MCMC_infer_only(f = f, l = l, exon_id = exon_id, N = N, R = R, K = K,
burn_in = burn_in, mean_log_precision = mean_log_precision, sd_log_precision = sd_log_precision)
if(chain[[2]][1] == 0){ # IF the first chain didn't converge (3 times), return NULL result:
return( list(NULL, convergence = chain[[2]]) )
}
res = res_compute_infer_only( chain = chain, K = K)
return( list(res = res, convergence = chain[[2]]) ) # return the convergence result too (to check they are all converged with reasonable burn-in).
}
MCMC_infer_only = function(f, l, exon_id, N, R, K, burn_in, mean_log_precision, sd_log_precision,
FIRST_chain = 1){
# define object containing the data:
f_list = list()
# starting values for the alpha parameters, sampled in the log-space:
alpha_new = list()
# pi:
pi_new = list()
# mcmc matrices:
mcmc_alpha = list()
# chol matrices:
chol_mat = list()
i = 1 # group index (always 1)
# define object containing the data:
f_list[[i]] = as.matrix(f)
# starting values for alpha_new (log space):
if( mean_log_precision != 0){
alpha_new[[i]] = rep( mean_log_precision - log(K), K) # delta_1, ..., delta_{K-1}, delta_{K}
}else{
alpha_new[[i]] = rep( log(10) - log(K), K) # delta_1, ..., delta_{K-1}, delta_{K}
}
# pi's:
pi_new[[i]] = matrix( 1/K, nrow = N[i], ncol = K)
# mcmc matrices:
mcmc_alpha[[i]] = matrix(NA, nrow = R + burn_in, ncol = K) # hyper-parameters of the DM
#chol matrices:
chol_mat[[i]] = matrix(0, nrow = K, ncol = K)
one_transcript = colSums(exon_id) == 1
N = as.integer(N)
# Run the MCMC fully in Rcpp:
res = .Call(`_BANDITS_Rcpp_FULL_Unique_Multigroup`, K, R + burn_in, burn_in, N, 1, # 1 indicates N_groups
mean_log_precision, sd_log_precision, pi_new, mcmc_alpha,
alpha_new, chol_mat, l, f_list, exon_id, one_transcript)
# Compute the convergence diagnostic:
seq. = round( seq.int(1, R, length.out = 10^4 ) ) # thin if R > 10^4 (by construction R >= 10^4)
convergence = my_heidel.diag(res[[2]][seq.], R = length(seq.), by. = length(seq.)/10, pvalue = 0.01)
# output:
# Stationarity test passed (1) or not (0);
# start iteration (it'd be > burn_in);
# p-value (for the Stationarity test).
n = 1 # group index (always 1)
if(convergence[1] == 1){ # if it converged:
if(convergence[2] > 1){ # remove burn-in estimated by heidel.diag (which is, AT MOST, half of the chain):
res[[1]][[n]] = res[[1]][[n]][seq.,][-{seq_len(convergence[2]-1)},]
res[[3]] = c(res[[3]])[seq.][-{seq_len(convergence[2]-1)}]
}else{ # if convergence[2] == 1, seq. has altready been defined above.
if(R > 10^4){ # thin if R > 10^4
res[[1]][[n]] = res[[1]][[n]][seq.,]
res[[3]] = c(res[[3]])[seq.]
}
}
}else{ # IF not converged, RUN a second chain (once only):
if(FIRST_chain < 3){ # if first or second chain re-run again:
# message("the first chain did NOT converge, I run a second one:")
return( MCMC_infer_only(f, l, exon_id, N, R, K, burn_in, mean_log_precision, sd_log_precision, FIRST_chain = FIRST_chain + 1) )
}else{ # if I ran 3 chains already and none of them converged, return convergence failure message:
return(list(NaN, convergence, FIRST_chain))
}
}
# thin results to return 10^4 iterations.
# thin if R > 10^4 (to return 10^4 values).
list( res[[1]], convergence, res[[3]] ) # I return the list of MCMC chains, excluding the burn-in, and the convergence output
}
res_compute_infer_only = function(chain, K){
mean_prec = mean(chain[[3]])
sd_prec = sd(chain[[3]])
mode_groups = vapply(chain[[1]], function(x) colSums(x), FUN.VALUE = numeric(K) )
mode_groups = apply( mode_groups, 2, function(x) x/sum(x))
sd_groups = vapply(chain[[1]], function(x) sqrt(diag(var(x))), FUN.VALUE = numeric(K) )
list( c(mean_prec, sd_prec), mode_groups, sd_groups )
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.