tests/testthat/test_parameter_estimation.R

context("Parameter estimation and denoised data (spikes)")

test_that("Estimates match the given seed (spikes)", {
  # Data example
  set.seed(7)
  Data <- makeExampleBASiCS_Data(WithSpikes = TRUE)
  
  # Fixing starting values
  PriorParam <- BASiCS_PriorParam(Data, k = 12)
  set.seed(2018)
  Start <- BASiCS:::.BASiCS_MCMC_Start(
    Data,
    PriorParam,
    WithSpikes = TRUE,
    Regression = FALSE
  )

  # Running the samples
  set.seed(18)
  Chain <- run_MCMC(
    Data,
    N = 1000,
    Thin = 10,
    Burn = 500, 
    Regression = FALSE,
    PrintProgress = FALSE, 
    Start = Start,
    PriorParam = PriorParam
  )

  # Calculating a posterior summary
  PostSummary <- Summary(Chain)
  
  # Checking parameter names
  ParamNames <- c("mu", "delta", "phi", "s", "nu", "theta")
  expect_equal(names(Chain@parameters), ParamNames)
  expect_equal(names(PostSummary@parameters), ParamNames)
            
  # Check if parameter estimates match for the first 5 genes and cells
  Mu <- c(9.983,  6.903,  3.242,  5.589, 23.492)
  MuObs <- as.vector(round(displaySummaryBASiCS(PostSummary, "mu")[1:5,1],3))
  expect_equal(MuObs, Mu, tolerance = 1, scale = 1)
            
  Delta <- c(0.870, 0.731, 1.614, 1.496, 0.472)
  DeltaObs <- as.vector(round(displaySummaryBASiCS(PostSummary, 
                                                   "delta")[1:5,1],3))
  expect_equal(DeltaObs, Delta, tolerance = 1, scale = 1)

  Phi <- c(0.998, 0.682, 1.131, 1.146, 0.859)
  PhiObs <- as.vector(round(displaySummaryBASiCS(PostSummary, "phi")[1:5,1],3))
  expect_equal(PhiObs, Phi, tolerance = 1, scale = 1)
            
  S <- c(1.017, 0.114, 0.606, 1.095, 0.289)
  SObs <- as.vector(round(displaySummaryBASiCS(PostSummary, "s")[1:5,1],3))
  expect_equal(SObs, S, tolerance = 1, scale = 1)

  Theta <- 0.251
  ThetaObs <- round(displaySummaryBASiCS(PostSummary, "theta")[1],3)
  expect_equal(ThetaObs, Theta, tolerance = 1, scale = 1)
  
  # Obtaining denoised counts     
  DC <- BASiCS_DenoisedCounts(Data, Chain)
  # Checks for an arbitrary set of genes / cells
  DCcheck0 <- c(22.559,  0.940,  0.000,  1.880, 27.259)
  DCcheck <- as.vector(round(DC[1:5,1], 3))
  expect_equal(DCcheck, DCcheck0, tolerance = 1.5, scale = 1)
  
  # Obtaining denoised rates
  DR <- BASiCS_DenoisedRates(Data, Chain)
  # Checks for an arbitrary set of genes / cells
  DRcheck0 <- c(0.503, 2.591, 7.458, 4.614, 1.592)
  DRcheck <- as.vector(round(DR[10,1:5], 3))
  expect_equal(DRcheck, DRcheck0, tolerance = 1.5, scale = 1)
})

test_that("Chain creation works when StoreAdapt=TRUE (spikes)", 
{
  # Data example
  set.seed(8)
  Data <- makeExampleBASiCS_Data(WithSpikes = TRUE)

  # Fixing starting values
  PriorParam <- BASiCS_PriorParam(Data, k = 12)
  set.seed(2018)
  Start <- BASiCS:::.BASiCS_MCMC_Start(
    Data,
    PriorParam,
    WithSpikes = TRUE,
    Regression = FALSE
  )

  # Running the samples
  set.seed(18)
  Chain <- run_MCMC(
    Data,
    N = 8,
    Thin = 2,
    Burn = 4,
    Regression = FALSE,
    PrintProgress = FALSE, 
    StoreAdapt = TRUE,
    Start = Start,
    PriorParam = PriorParam
  )
  expect_s4_class(Chain, "BASiCS_Chain")
})

Try the BASiCS package in your browser

Any scripts or data that you put into this service are public.

BASiCS documentation built on April 16, 2021, 6 p.m.