Description Usage Arguments Details Value Author(s) References Examples
Uses a moderated t-test with empirical Bayes shrinkage to select differentially expressed features.
1 2 3 4 5 6 7 8 | ## S4 method for signature 'matrix'
limmaSelection(measurements, classes, ...)
## S4 method for signature 'DataFrame'
limmaSelection(measurements, classes, datasetName,
trainParams, predictParams, resubstituteParams, ...,
selectionName = "Moderated t-test", verbose = 3)
## S4 method for signature 'MultiAssayExperiment'
limmaSelection(measurements, targets = NULL, ...)
|
measurements |
Either a |
classes |
A vector of class labels of class |
targets |
Names of data tables to be combined into a single table and used in the analysis. |
... |
Variables not used by the |
datasetName |
A name for the data set used. Stored in the result. |
trainParams |
A container of class |
predictParams |
A container of class |
resubstituteParams |
An object of class |
selectionName |
A name to identify this selection method by. Stored in the result. |
verbose |
Default: 3. A number between 0 and 3 for the amount of progress messages to give. This function only prints progress messages if the value is 3. |
This selection method looks for changes in means and uses a moderated t-test.
An object of class SelectResult
or a list of such objects, if the classifier
which was used for determining the specified performance metric made a number of prediction varieties.
Dario Strbenac
Limma: linear models for microarray data, Gordon Smyth, 2005, In: Bioinformatics and Computational Biology Solutions using R and Bioconductor, Springer, New York, pages 397-420.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | #if(require(sparsediscrim))
#{
# Genes 76 to 100 have differential expression.
genesMatrix <- sapply(1:25, function(sample) c(rnorm(100, 9, 2)))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(sample)
c(rnorm(75, 9, 2), rnorm(25, 14, 2))))
classes <- factor(rep(c("Poor", "Good"), each = 25))
colnames(genesMatrix) <- paste("Sample", 1:ncol(genesMatrix))
rownames(genesMatrix) <- paste("Gene", 1:nrow(genesMatrix))
resubstituteParams <- ResubstituteParams(nFeatures = seq(10, 100, 10),
performanceType = "balanced error", better = "lower")
selected <- limmaSelection(genesMatrix, classes, "Example",
trainParams = TrainParams(), predictParams = PredictParams(),
resubstituteParams = resubstituteParams)
selected@chosenFeatures
#}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.