Description Usage Arguments Details Value Author(s) Examples
Ranks features by largest Bartlett statistic and chooses the features which have best resubstitution performance.
1 2 3 4 5 6 7 8 | ## S4 method for signature 'matrix'
bartlettSelection(measurements, classes, ...)
## S4 method for signature 'DataFrame'
bartlettSelection(measurements, classes, datasetName,
trainParams, predictParams, resubstituteParams,
selectionName = "Bartlett Test", verbose = 3)
## S4 method for signature 'MultiAssayExperiment'
bartlettSelection(measurements, targets, ...)
|
measurements |
Either a |
classes |
Either a vector of class labels of class |
targets |
If |
... |
Variables not used by the |
datasetName |
A name for the data set used. Stored in the result. |
trainParams |
A container of class |
predictParams |
A container of class |
resubstituteParams |
An object of class |
selectionName |
A name to identify this selection method by. Stored in the result. |
verbose |
Default: 3. A number between 0 and 3 for the amount of progress messages to give. This function only prints progress messages if the value is 3. |
The calculation of the test statistic is performed by the bartlett.test
function from the stats
package.
Data tables which consist entirely of non-numeric data cannot be analysed. If measurements
is an object of class MultiAssayExperiment
, the factor of sample classes must be stored
in the DataFrame accessible by the colData
function with column name "class"
.
An object of class SelectResult
or a list of such objects, if the classifier which was
used for determining the specified performance metric made a number of prediction varieties.
Dario Strbenac
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | # Samples in one class with differential variability to other class.
# First 20 genes are DV.
genesRNAmatrix <- sapply(1:25, function(sample) c(rnorm(100, 9, 1)))
moreVariable <- sapply(1:25, function(sample) rnorm(20, 9, 5))
genesRNAmatrix <- cbind(genesRNAmatrix, rbind(moreVariable,
sapply(1:25, function(sample) rnorm(80, 9, 1))))
colnames(genesRNAmatrix) <- paste("Sample", 1:50)
rownames(genesRNAmatrix) <- paste("Gene", 1:100)
genesSNPmatrix <- matrix(sample(c("None", "Missense"), 250, replace = TRUE),
ncol = 50)
colnames(genesSNPmatrix) <- paste("Sample", 1:50)
rownames(genesSNPmatrix) <- paste("Gene", 1:5)
classes <- factor(rep(c("Poor", "Good"), each = 25))
names(classes) <- paste("Sample", 1:50)
genesDataset <- MultiAssayExperiment(list(RNA = genesRNAmatrix, SNP = genesSNPmatrix),
colData = DataFrame(class = classes))
# Wait for update to MultiAssayExperiment wideFormat function.
trainIDs <- paste("Sample", c(1:20, 26:45))
genesDataset <- subtractFromLocation(genesDataset, training = trainIDs,
targets = "RNA") # Exclude SNP data.
resubstituteParams <- ResubstituteParams(nFeatures = seq(10, 100, 10),
performanceType = "balanced error",
better = "lower")
bartlettSelection(genesDataset, datasetName = "Example", targets = "RNA",
trainParams = TrainParams(fisherDiscriminant),
predictParams = PredictParams(NULL),
resubstituteParams = resubstituteParams)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.