Description Usage Arguments Value Examples
View source: R/enhance_table.R
Distill the main topics from the enrichment results, based on the graph derived from constructing an enrichment map
1 2 3 4 5 6 7  | distill_enrichment(
  res_enrich,
  res_de,
  annotation_obj,
  n_gs = nrow(res_enrich),
  cluster_fun = "cluster_markov"
)
 | 
res_enrich | 
 A   | 
res_de | 
 A   | 
annotation_obj | 
 A   | 
n_gs | 
 Integer value, corresponding to the maximal number of gene sets to be used.  | 
cluster_fun | 
 Character, referring to the name of the function used for
the community detection in the enrichment map graph. Could be one of "cluster_markov",
"cluster_louvain", or "cluster_walktrap", as they all return a   | 
A list containing three objects:
 the distilled table of enrichment, distilled_table, where the new meta-genesets
are identified and defined, specifying e.g. the names of each component, and the
genes associated to these.
 the distilled graph for the enrichment map, distilled_em, with the information
on the membership
 the original res_enrich, augmented with the information of the membership
related to the meta-genesets
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38  | library("macrophage")
library("DESeq2")
library("org.Hs.eg.db")
library("AnnotationDbi")
# dds object
data("gse", package = "macrophage")
dds_macrophage <- DESeqDataSet(gse, design = ~line + condition)
rownames(dds_macrophage) <- substr(rownames(dds_macrophage), 1, 15)
dds_macrophage <- estimateSizeFactors(dds_macrophage)
# annotation object
anno_df <- data.frame(
  gene_id = rownames(dds_macrophage),
  gene_name = mapIds(org.Hs.eg.db,
                     keys = rownames(dds_macrophage),
                     column = "SYMBOL",
                     keytype = "ENSEMBL"),
  stringsAsFactors = FALSE,
  row.names = rownames(dds_macrophage)
)
# res object
data(res_de_macrophage, package = "GeneTonic")
res_de <- res_macrophage_IFNg_vs_naive
# res_enrich object
data(res_enrich_macrophage, package = "GeneTonic")
res_enrich <- shake_topGOtableResult(topgoDE_macrophage_IFNg_vs_naive)
res_enrich <- get_aggrscores(res_enrich, res_de, anno_df)
distilled <- distill_enrichment(res_enrich,
                                res_de,
                                annotation_obj,
                                n_gs = 100,
                                cluster_fun = "cluster_markov")
colnames(distilled$distilled_table)
distilled$distilled_em
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.