gs_scores: Compute gene set scores

Description Usage Arguments Value See Also Examples

View source: R/gs_heatmap.R

Description

Compute gene set scores for each sample, by transforming the gene-wise change to a geneset-wise change

Usage

1
gs_scores(se, res_de, res_enrich, annotation_obj = NULL)

Arguments

se

A SummarizedExperiment object, or an object derived from this class, such as a DESeqTransform object (variance stabilized transformed data, or regularized logarithm transformed), in where the transformation has been applied to make the data more homoscedastic and thus a better fit for visualization.

res_de

A DESeqResults object.

res_enrich

A data.frame object, storing the result of the functional enrichment analysis. See more in the main function, GeneTonic(), to check the formatting requirements (a minimal set of columns should be present).

annotation_obj

A data.frame object with the feature annotation information, with at least two columns, gene_id and gene_name.

Value

A matrix with the geneset Z scores, e.g. to be plotted with gs_scoresheat()

See Also

gs_scoresheat() plots these scores

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
library("macrophage")
library("DESeq2")
library("org.Hs.eg.db")
library("AnnotationDbi")

# dds object
data("gse", package = "macrophage")
dds_macrophage <- DESeqDataSet(gse, design = ~line + condition)
rownames(dds_macrophage) <- substr(rownames(dds_macrophage), 1, 15)
dds_macrophage <- estimateSizeFactors(dds_macrophage)

vst_macrophage <- vst(dds_macrophage)

# annotation object
anno_df <- data.frame(
  gene_id = rownames(dds_macrophage),
  gene_name = mapIds(org.Hs.eg.db,
                     keys = rownames(dds_macrophage),
                     column = "SYMBOL",
                     keytype = "ENSEMBL"),
  stringsAsFactors = FALSE,
  row.names = rownames(dds_macrophage)
)

# res object
data(res_de_macrophage, package = "GeneTonic")
res_de <- res_macrophage_IFNg_vs_naive

# res_enrich object
data(res_enrich_macrophage, package = "GeneTonic")
res_enrich <- shake_topGOtableResult(topgoDE_macrophage_IFNg_vs_naive)
res_enrich <- get_aggrscores(res_enrich, res_de, anno_df)

scores_mat <- gs_scores(vst_macrophage,
                        res_de,
                        res_enrich[1:50,],
                        anno_df)

GeneTonic documentation built on Nov. 8, 2020, 5:27 p.m.