Description Usage Arguments Value Examples
This function will calculate the number of observed interactions between two sets of features provided by the end-user. This allows the summarisation of the number of features of a specific type a particular region is involved in and how many interactions exist between them.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | summariseByFeaturePairs(
GIObject,
features.one,
feature.name.one,
features.two,
feature.name.two
)
## S4 method for signature 'GInteractions'
summariseByFeaturePairs(
GIObject,
features.one,
feature.name.one,
features.two,
feature.name.two
)
|
GIObject |
An annotated GInteractions object |
features.one |
A GRanges object containing the feature set of interest |
feature.name.one |
The name of the first feature set of interest |
features.two |
A GRanges object containing the second feature set of interest |
feature.name.two |
The name of the second feature set of interest |
A data frame with one line for each range in ‘features’
1 2 3 4 5 6 7 8 9 10 11 12 | data('hic_example_data')
data('mm9_refseq_promoters')
data('thymus_enhancers')
annotateInteractions(hic_example_data, list(promoter = mm9_refseq_promoters, enhancer = thymus_enh))
# can be slow so subset of features used for examples
p <- unique(unlist(head(regions(hic_example_data)$promoter.id)))
e <- unique(unlist(head(regions(hic_example_data)$enhancer.id)))
p <- p[!is.na(p)]
p <- mm9_refseq_promoters[p]
e <- e[!is.na(e)]
e <- thymus_enh[e]
ep_summary <- summariseByFeaturePairs(hic_example_data, p, 'promoter', e, 'enhancer')
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.