Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
fig.align= "center",
comment = "#>"
)
## ----Bioconductor installation, echo=TRUE, eval=FALSE-------------------------
# if (!requireNamespace("BiocManager", quietly = TRUE))
# install.packages("BiocManager")
# BiocManager::install('GmicR')
## ----downloading data, echo=TRUE----------------------------------------------
url <- "http://xcell.ucsf.edu/iris_u133a_expr.txt"
dat_download <- data.frame(read.delim(url),
row.names = 1, stringsAsFactors = FALSE, check.rows = FALSE)
# data are transposed for processing
datExpr0<-data.frame(t(dat_download))
## ----checking genes, message=FALSE, warning=FALSE-----------------------------
library(WGCNA)
gsg = goodSamplesGenes(datExpr0, verbose = 3) # columns must be genes
gsg$allOK
## ----checking samples---------------------------------------------------------
sampleTree = hclust(dist(datExpr0), method = "average");
par(cex = 0.6);
par(mar = c(0,4,2,0))
plot(sampleTree, main = "Sample Filtering",
labels = FALSE)
# final expression set ----------------------------------------------------
datExpr = datExpr0
## ----saving expression data, echo=TRUE, eval = FALSE--------------------------
# Exps_for_xCell_analysis<-data.frame(t(datExpr), check.names = FALSE)
#
# write.csv(Exps_for_xCell_analysis, file = "Exps_for_xCell_analysis.csv")
## ----xCell email screen shot, echo=FALSE, out.width = '80%'-------------------
xCell_email_dir<-system.file("extdata", "xCell_email.png",
package = "GmicR", mustWork = TRUE)
knitr::include_graphics(xCell_email_dir)
## ----clearing environment and loading data, include=FALSE---------------------
remove(list = ls())
library(GmicR)
sample_dat_dir<-system.file("extdata", "sample_dat.Rdata",
package = "GmicR", mustWork = TRUE)
load(sample_dat_dir)
## ----module detection, echo=TRUE, results=FALSE-------------------------------
library(GmicR)
GMIC_Builder<-Auto_WGCNA(sample_dat,
mergeCutHeight = 0.35, minModuleSize = 10,
deepSplit = 4, networkType = "signed hybrid", TOMType = "unsigned",
corFnc = "bicor", sft_RsquaredCut = 0.85,
reassignThreshold = 1e-06, maxBlockSize = 25000)
## ----modules, echo=TRUE, fig.height=5, fig.width=5----------------------------
GMIC_Builder$Input_Parameters
## ----plot1,, echo=TRUE, fig.height=5, fig.width=5-----------------------------
GMIC_Builder$Output_plots$soft_threshold_plot
## ----loading processed data, include=FALSE------------------------------------
GMIC_Builder_dir<-system.file("extdata", "GMIC_Builder.Rdata",
package = "GmicR", mustWork = TRUE)
load(GMIC_Builder_dir)
## ----plot2, , echo=TRUE, fig.height=5, fig.width=5----------------------------
GMIC_Builder$Output_plots$module_clustering
## ----plot3, , echo=TRUE, fig.height=5, fig.width=5----------------------------
GMIC_Builder$Output_plots$net_dendrogram
## ----GO module annotations, echo=TRUE-----------------------------------------
# Module hubs and Gene influence
GMIC_Builder<-Query_Prep(GMIC_Builder,
calculate_intramodularConnectivity= TRUE,
Find_hubs = TRUE)
head(GMIC_Builder$Query)
## ----GO enrichment, echo=TRUE-------------------------------------------------
GMIC_Builder<-GSEAGO_Builder(GMIC_Builder,
species = "Homo sapiens", ontology = "BP", no_cores = 1)
## ----GO module names, echo=TRUE-----------------------------------------------
GMIC_Builder<-GO_Module_NameR(GMIC_Builder)
## ----GO_table-----------------------------------------------------------------
head(GMIC_Builder$GO_table, n = 4)
## ----GO_Query-----------------------------------------------------------------
head(GMIC_Builder$GO_Query, n = 4)
## ----cell signatures, echo=TRUE-----------------------------------------------
file_dir<-system.file("extdata", "IRIS_xCell_sig.txt",
package = "GmicR", mustWork = TRUE)
## ----discretizing data--------------------------------------------------------
GMIC_Builder_disc<-Data_Prep(GMIC_Builder,
xCell_Signatures = file_dir,
ibreaks=10, Remove_ME0 = TRUE)
head(GMIC_Builder_disc$disc_data[sample(seq(1,64),4)])
## ----loading processed network, message=FALSE, warning=FALSE, include=FALSE----
GMIC_net_dir<-system.file("extdata", "GMIC_net.Rdata",
package = "GmicR", mustWork = TRUE)
load(GMIC_net_dir)
## ----bnlearning, eval=FALSE, echo=TRUE----------------------------------------
#
# no_cores<-1 # multicore support
# cl<-parallel::makeCluster(1)
#
#
# GMIC_net<-bn_tabu_gen(GMIC_Builder_disc,
# cluster = cl, debug = FALSE,
# bootstraps_replicates = 50, score = "bds")
#
# parallel::stopCluster(cl) # stop cluster
## ----detecting inverse relationships, echo=TRUE-------------------------------
GMIC_Final<-InverseARCs(GMIC_net, threshold = -0.3)
## ----Visualizing network, echo=TRUE-------------------------------------------
GMIC_Final_dir<-system.file("extdata", "GMIC_Final.Rdata",
package = "GmicR", mustWork = TRUE)
load(GMIC_Final_dir)
if(interactive()){
Gmic_viz(GMIC_Final)
}
## ----screen shot1, echo=FALSE, out.width = '100%'-----------------------------
example_shiny_dir<-system.file("extdata", "example_shiny1.png",
package = "GmicR", mustWork = TRUE)
knitr::include_graphics(example_shiny_dir)
## ----screen shot2, echo=FALSE, out.width = '100%'-----------------------------
example_shiny_dir<-system.file("extdata", "example_shiny2.png",
package = "GmicR", mustWork = TRUE)
knitr::include_graphics(example_shiny_dir)
## ----screen shot3, echo=FALSE, out.width = '100%'-----------------------------
example_shiny_dir<-system.file("extdata", "example_shiny3.png",
package = "GmicR", mustWork = TRUE)
knitr::include_graphics(example_shiny_dir)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.