inst/doc/MIGSA.R

### R code from vignette source 'MIGSA.Rnw'

###################################################
### code chunk number 1: MIGSA.Rnw:138-143 (eval = FALSE)
###################################################
## ## try http:// if https:// URLs are not supported
## if (!requireNamespace("BiocManager", quietly = TRUE)) {
##   install.packages("BiocManager")
## }
## BiocManager::install("MIGSA")


###################################################
### code chunk number 2: MIGSA.Rnw:162-179
###################################################
library(GSEABase)
gs1 <- GeneSet(c("10", "1544", "1548", "1549", "1553", "7498", "9"),
  setName = "hsa00232",
  setIdentifier = "Caffeine metabolism"
)
gs1
gs2 <- GeneSet(c("10229", "27235", "3242", "51004", "51805", "6898", "84274"),
  setName = "hsa00130",
  setIdentifier = "Ubiquinone and other terpenoid-quinone biosynthesis"
)
gs3 <- GeneSet(c("11019", "387787", "51601"),
  setName = "hsa00785",
  setIdentifier = "Lipoic acid metabolism"
)
## And now construct the GeneSetCollection object.
gsetsColl <- GeneSetCollection(list(gs1, gs2, gs3))
gsetsColl


###################################################
### code chunk number 3: MIGSA.Rnw:192-203 (eval = FALSE)
###################################################
## ## Not run:
## 
## ## Load cellular component gene sets (another possibility would be "MF" or "BP")
## ccGsets <- loadGo("CC")
## # It is a GeneSetCollection object
## 
## ## Load KEGG and Reactome gene sets
## keggReact <- downloadEnrichrGeneSets(c("KEGG_2015", "Reactome_2015"))
## ## It is a list object containing two GeneSetCollection objects
## 
## ## End(Not run)


###################################################
### code chunk number 4: Speedup1
###################################################
library(BiocParallel)
library(mGSZ)
library(MIGSA)
library(MIGSAdata)
data(tcgaMAdata)
subtypes <- tcgaMAdata$subtypes
geneExpr <- tcgaMAdata$geneExpr
## MA data: filter genes with less than 30% of genes read per condition
dim(geneExpr)
geneExpr <- geneExpr[
  rowSums(is.na(geneExpr[, subtypes == "Basal" ])) <
    .3 * sum(subtypes == "Basal") &
    rowSums(is.na(geneExpr[, subtypes == "LumA" ])) <
      .3 * sum(subtypes == "LumA"),
]
dim(geneExpr)


###################################################
### code chunk number 5: Speedup2 (eval = FALSE)
###################################################
## ## Not run:
## 
## ## Download GO and KEGG gene sets using MIGSA
## gSets <- list(
##   KEGG = downloadEnrichrGeneSets("KEGG_2015")[[1]],
##   BP = loadGo("BP"),
##   CC = loadGo("CC"),
##   MF = loadGo("MF")
## )
## gSetsList <- do.call(c, lapply(gSets, MIGSA:::asList))
## rm(gSets)
## nCores <- c(1, 2, 4, 8, 10, 12, 14)
## allRes <- lapply(nCores, function(actCores) {
##   # setting in how many cores to run
##   register(MulticoreParam(
##     workers = actCores, threshold = "DEBUG",
##     progressbar = TRUE
##   ))
## 
##   set.seed(8818)
##   newtimeSpent <- Sys.time()
##   MIGSAmGSZres <- MIGSAmGSZ(geneExpr, gSetsList, subtypes)
##   newtimeSpent <- Sys.time() - newtimeSpent
## 
##   res <- list(timeSpent = newtimeSpent, res = MIGSAmGSZres)
## 
##   return(res)
## })
## 
## set.seed(8818)
## timeSpent <- Sys.time()
## mGSZres <- mGSZ(geneExpr, gSetsList, subtypes)
## timeSpent <- Sys.time() - timeSpent
## mGSZres <- mGSZres$mGSZ
## ## this tests that the returned values are equal, must give all TRUE
## lapply(allRes, function(actRes) {
##   actRes <- actRes$res
##   actRes <- actRes[, 1:4]
##   mergedRes <- merge(mGSZres, actRes,
##     by = "gene.sets",
##     suffixes = c("mGSZ", "MIGSAmGSZ")
##   )
## 
##   all(unlist(lapply(2:4, function(x) {
##     all.equal(mergedRes[, x], mergedRes[, x + 3])
##   })))
## })
## ## End(Not run)


###################################################
### code chunk number 6: Speedup3
###################################################
## As last chunk of code was not executed, we load that data:
library(MIGSAdata)
data(mGSZspeedup)
nCores <- mGSZspeedup$nCores
allRes <- mGSZspeedup$allRes
timeSpent <- mGSZspeedup$timeSpent
## End(Loading data)

newtimeSpent <- lapply(allRes, function(actRes) {
  actRes$timeSpent
})
names(newtimeSpent) <- nCores
speeduptable <- c(timeSpent, unlist(newtimeSpent))
names(speeduptable) <- c(1, nCores)
## Let's put all times in the same unit in order to measure speedup
newtimeSpent <- lapply(newtimeSpent, function(acttime) {
  units(acttime) <- "secs"
  return(acttime)
})
units(timeSpent) <- "secs"
speedup <- do.call(c, lapply(newtimeSpent, function(acttime) {
  as.numeric(timeSpent) / as.numeric(acttime)
}))
speeduptable <- rbind(speeduptable, c(1, speedup))
## calculate efficiency
speeduptable <- rbind(
  speeduptable,
  speeduptable[2, ] / as.numeric(colnames(speeduptable))
)
rownames(speeduptable) <- c("Runtime", "Speedup", "Efficiency")
round(speeduptable, 2)


###################################################
### code chunk number 7: MIGSAmGSZ example
###################################################
library(MIGSA)
## Let's create our gene expression matrix with 200 genes and 8 subjects
nSamples <- 8
# 8 subjects
nGenes <- 200
# 200 genes
geneNames <- paste("g", 1:nGenes, sep = "")
# with names g1 ... g200

## Create random gene expression data matrix.
set.seed(8818)
exprMatrix <- matrix(rnorm(nGenes * nSamples), ncol = nSamples)
## It must have rownames, as they will be treated as the gene names!
rownames(exprMatrix) <- geneNames
## There will be 10 differentially expressed genes.
nDeGenes <- 10
## Let's generate the offsets to sum to the differentially expressed genes.
deOffsets <- matrix(2 * abs(rnorm(nDeGenes * nSamples / 2)), ncol = nSamples / 2)
## Randomly select which are the DE genes.
deIndexes <- sample(1:nGenes, nDeGenes, replace = FALSE)
exprMatrix[deIndexes, 1:(nSamples / 2)] <-
  exprMatrix[deIndexes, 1:(nSamples / 2)] + deOffsets
## 4 subjects with condition C1 and 4 with C2.
conditions <- rep(c("C1", "C2"), c(nSamples / 2, nSamples / 2))
nGSets <- 50
# 50 gene sets
## Let's create randomly 50 gene sets, of 10 genes each
gSets <- lapply(1:nGSets, function(i) sample(geneNames, size = 10))
names(gSets) <- paste("set", as.character(1:nGSets), sep = "")
## with names set1 ... set50

## And simply execute MIGSAmGSZ
MIGSAmGSZres <- MIGSAmGSZ(exprMatrix, gSets, conditions)
## It is just a simple data.frame
head(MIGSAmGSZres)


###################################################
### code chunk number 8: MIGSA example
###################################################
library(MIGSA)
## Let's simulate two expression matrices of 300 genes and 16 subjects.
nGenes <- 300
# 300 genes
nSamples <- 16
# 16 subjects
geneNames <- paste("g", 1:nGenes, sep = "")
# with names g1 ... g300

## Create the random gene expression data matrices.
set.seed(8818)
exprData1 <- matrix(rnorm(nGenes * nSamples), ncol = nSamples)
rownames(exprData1) <- geneNames
exprData2 <- matrix(rnorm(nGenes * nSamples), ncol = nSamples)
rownames(exprData2) <- geneNames
## There will be 30 differentially expressed genes.
nDeGenes <- nGenes / 10
## Let's generate the offsets to sum to the differentially expressed genes.
deOffsets <- matrix(2 * abs(rnorm(nDeGenes * nSamples / 2)), ncol = nSamples / 2)
## Randomly select which are the DE genes.
deIndexes1 <- sample(1:nGenes, nDeGenes, replace = FALSE)
exprData1[deIndexes1, 1:(nSamples / 2)] <-
  exprData1[deIndexes1, 1:(nSamples / 2)] + deOffsets
deIndexes2 <- sample(1:nGenes, nDeGenes, replace = FALSE)
exprData2[deIndexes2, 1:(nSamples / 2)] <-
  exprData2[deIndexes2, 1:(nSamples / 2)] + deOffsets
exprData1 <- new("MAList", list(M = exprData1))
exprData2 <- new("MAList", list(M = exprData2))
## 8 subjects with condition C1 and 8 with C2.
conditions <- rep(c("C1", "C2"), c(nSamples / 2, nSamples / 2))
fitOpts <- FitOptions(conditions)
nGSets <- 30
# 30 gene sets
## Let's create randomly 30 gene sets, of 10 genes each

gSets1 <- lapply(1:nGSets, function(i) sample(geneNames, size = 10))
names(gSets1) <- paste("set", as.character(1:nGSets), sep = "")
myGSs1 <- as.Genesets(gSets1)
gSets2 <- lapply(1:nGSets, function(i) sample(geneNames, size = 10))
names(gSets2) <- paste("set", as.character((nGSets + 1):(2 * nGSets)), sep = "")
myGSs2 <- as.Genesets(gSets2)
igsaInput1 <- IGSAinput(
  name = "igsaInput1", expr_data = exprData1,
  fit_options = fitOpts
)
igsaInput2 <- IGSAinput(
  name = "igsaInput2", expr_data = exprData2,
  fit_options = fitOpts
)
experiments <- list(igsaInput1, igsaInput2)
## As we did not set gene sets for each IGSAinput, then we will have to
## provide them in MIGSA function

## another way of generating the same MIGSA input would be setting the
## gene sets individually to each IGSAinput:
igsaInput1 <- IGSAinput(
  name = "igsaInput1", expr_data = exprData1,
  fit_options = fitOpts,
  gene_sets_list = list(myGeneSets1 = myGSs1, myGeneSets2 = myGSs2)
)
igsaInput2 <- IGSAinput(
  name = "igsaInput2", expr_data = exprData2,
  fit_options = fitOpts,
  gene_sets_list = list(myGeneSets1 = myGSs1, myGeneSets2 = myGSs2)
)
experiments <- list(igsaInput1, igsaInput2)
## And then simply run MIGSA
migsaRes <- MIGSA(experiments)
## migsaRes contains the p-values obtained in each experiment for each gene set
head(migsaRes)


###################################################
### code chunk number 9: MIGSA.Rnw:469-495
###################################################
## Other possible analyses:
## If we want some gene sets to be evaluated in just one IGSAinput we
## can do this:

## If we want to test myGSs1 in exprData1 and myGSs2 in exprData2:
igsaInput1 <- IGSAinput(
  name = "igsaInput1", expr_data = exprData1,
  fit_options = fitOpts, gene_sets_list = list(myGeneSets1 = myGSs1)
)
igsaInput2 <- IGSAinput(
  name = "igsaInput2", expr_data = exprData2,
  fit_options = fitOpts, gene_sets_list = list(myGeneSets2 = myGSs2)
)
experiments <- list(igsaInput1, igsaInput2)
## If we want to test myGSs1 in exprData1 and both in exprData2:
igsaInput1 <- IGSAinput(
  name = "igsaInput1", expr_data = exprData1,
  fit_options = fitOpts, gene_sets_list = list(myGeneSets1 = myGSs1)
)
igsaInput2 <- IGSAinput(
  name = "igsaInput2", expr_data = exprData2,
  fit_options = fitOpts,
  gene_sets_list = list(myGeneSets1 = myGSs1, myGeneSets2 = myGSs2)
)
experiments <- list(igsaInput1, igsaInput2)
## And this way, all possible combinations.


###################################################
### code chunk number 10: tcga MIGSA1
###################################################
library(edgeR)
library(limma)
library(MIGSA)
library(MIGSAdata)
data(tcgaMAdata)
data(tcgaRNAseqData)
geneExpr <- tcgaMAdata$geneExpr
rnaSeq <- tcgaRNAseqData$rnaSeq
subtypes <- tcgaMAdata$subtypes
# or tcgaRNAseqData$subtypes; are the same
fitOpts <- FitOptions(subtypes)
## MA data: filter genes with less than 30% of genes read per condition
dim(geneExpr)
geneExpr <- geneExpr[
  rowSums(is.na(geneExpr[, subtypes == "Basal" ])) <
    .3 * sum(subtypes == "Basal") &
    rowSums(is.na(geneExpr[, subtypes == "LumA" ])) <
      .3 * sum(subtypes == "LumA"),
]
dim(geneExpr)
## create our IGSAinput object
geneExpr <- new("MAList", list(M = geneExpr))
geneExprIgsaInput <- IGSAinput(
  name = "tcgaMA",
  expr_data = geneExpr,
  fit_options = fitOpts,
  # with this treat we will get around 5% differentially expressed genes
  sea_params = SEAparams(treat_lfc = 1.05)
)
summary(geneExprIgsaInput)
## RNAseq data: filter genes with less than 30% of genes read per
## condition and (below)
dim(rnaSeq)
rnaSeq <- rnaSeq[
  rowSums(is.na(rnaSeq[, subtypes == "Basal" ])) <
    .3 * sum(subtypes == "Basal") &
    rowSums(is.na(rnaSeq[, subtypes == "LumA" ])) <
      .3 * sum(subtypes == "LumA"),
]
dim(rnaSeq)
## a mean less than 15 counts per condition.
rnaSeq <- rnaSeq[
  rowMeans(rnaSeq[, subtypes == "Basal" ], na.rm = TRUE) >= 15 &
    rowMeans(rnaSeq[, subtypes == "LumA"  ], na.rm = TRUE) >= 15,
]
dim(rnaSeq)
## create our IGSAinput object
rnaSeq <- DGEList(counts = rnaSeq)
rnaSeqIgsaInput <- IGSAinput(
  name = "tcgaRNA",
  expr_data = rnaSeq,
  fit_options = fitOpts,
  # with this treat we will get around 5% differentially expressed genes
  sea_params = SEAparams(treat_lfc = 1.45)
)
summary(rnaSeqIgsaInput)
experiments <- list(geneExprIgsaInput, rnaSeqIgsaInput)


###################################################
### code chunk number 11: tcga MIGSA2 (eval = FALSE)
###################################################
## ## Not run:
## 
## gSets <- list(
##   KEGG = downloadEnrichrGeneSets("KEGG_2015")[[1]],
##   BP = loadGo("BP"),
##   CC = loadGo("CC"),
##   MF = loadGo("MF")
## )
## set.seed(8818)
## tcgaMigsaRes <- MIGSA(experiments, geneSets = gSets)
## ## Time difference of 29.83318 mins in 10 cores
## ## End(Not run)


###################################################
### code chunk number 12: pbcmc MIGSA1
###################################################
library(limma)
library(MIGSA)
library(MIGSAdata)
data(pbcmcData)
## with these treat log fold change values we will get around 5% of
## differentially expressed genes for each experiment
treatLfcs <- c(0.7, 0.2, 0.6, 0.25, 0.4, 0.75)
names(treatLfcs) <- c("mainz", "nki", "transbig", "unt", "upp", "vdx")
experiments <- lapply(names(treatLfcs), function(actName) {
  actData <- pbcmcData[[actName]]
  actExprs <- actData$geneExpr
  actSubtypes <- actData$subtypes

  # filtrate genes with less than 30% per condition
  actExprs <- actExprs[
    rowSums(is.na(actExprs[, actSubtypes == "Basal" ])) <
      .3 * sum(actSubtypes == "Basal") &
      rowSums(is.na(actExprs[, actSubtypes == "LumA" ])) <
        .3 * sum(actSubtypes == "LumA"),
  ]

  # create our IGSAinput object
  actExprData <- new("MAList", list(M = actExprs))
  actFitOpts <- FitOptions(actSubtypes)
  actIgsaInput <- IGSAinput(
    name = actName,
    expr_data = actExprData,
    fit_options = actFitOpts,
    sea_params = SEAparams(treat_lfc = treatLfcs[[actName]])
  )
  return(actIgsaInput)
})


###################################################
### code chunk number 13: pbcmc MIGSA2 (eval = FALSE)
###################################################
## ## Not run:
## 
## gSets <- list(
##   KEGG = downloadEnrichrGeneSets("KEGG_2015")[[1]],
##   BP = loadGo("BP"),
##   CC = loadGo("CC"),
##   MF = loadGo("MF")
## )
## set.seed(8818)
## pbcmcMigsaRes <- MIGSA(experiments, geneSets = gSets)
## ## Time difference of 1.26684 hours in 10 cores
## ## End(Not run)


###################################################
### code chunk number 14: MIGSAres merge1 (eval = FALSE)
###################################################
## ## Not run:
## 
## dim(pbcmcMigsaRes)
## # [1] 20425     9
## dim(tcgaMigsaRes)
## # [1] 20425     5
## 
## ## Let's merge both results in one big MIGSAres object
## bcMigsaRes <- merge(pbcmcMigsaRes, tcgaMigsaRes)
## dim(bcMigsaRes)
## # [1] 20425     11
## ## End(Not run)


###################################################
### code chunk number 15: MIGSA.Rnw:701-721
###################################################
## As last chunk of code was not executed, we load that data:
library(MIGSA)
library(MIGSAdata)
data(bcMigsaResAsList)
bcMigsaRes <- MIGSA:::MIGSAres.data.table(
  bcMigsaResAsList$dframe,
  bcMigsaResAsList$genesRank
)
rm(bcMigsaResAsList)
## End(Loading data)

## Let's see a summary of enriched gene sets at different cutoff values
summary(bcMigsaRes)
## We will set a cutoff of 0.01 (recommended)
## A gene set will be considered enriched if its p-value is < 0.01 on
## SEA or GSEA.
bcMigsaRes <- setEnrCutoff(bcMigsaRes, 0.01)
## The bcMigsaRes data object that is included in MIGSA package is the
## following:
# bcMigsaRes <- bcMigsaRes[1:200,];


###################################################
### code chunk number 16: MIGSAres exploring1
###################################################
colnames(bcMigsaRes)
dim(bcMigsaRes)
summary(bcMigsaRes)
## We can see that 18,191 gene sets were not enriched, while 242 were
## enriched in every dataset.
## Moreover, there is a high consensus between datasets, with a maximum of 679
## enriched gene sets in common between upp and unt.
##
## Let's keep only gene sets enriched in at least one data set
bcMigsaRes <- bcMigsaRes[ rowSums(bcMigsaRes[, -(1:3)], na.rm = TRUE) > 0, ]
dim(bcMigsaRes)


###################################################
### code chunk number 17: MIGSA.Rnw:740-744
###################################################
# it is the same code as below, but saving the pdf to correctly load it in tex
pdf("bcMigsaResMigsaHeatmap.pdf")
aux <- migsaHeatmap(bcMigsaRes)
dev.off()


###################################################
### code chunk number 18: MIGSAres exploring2 (eval = FALSE)
###################################################
## ## Let's see enrichment heat map
## ## i.e. a heat map of binary data (enriched/not enriched)
## aux <- migsaHeatmap(bcMigsaRes)


###################################################
### code chunk number 19: MIGSAres exploring3
###################################################
## In this heat map we can see a high number of gene sets that are being
## enriched in consensus by most of the datasets. Let's explore them.
## We can obtain them (enriched in at least 80% of datasets) by doing
consensusGsets <- bcMigsaRes[ rowSums(bcMigsaRes[, -(1:3)], na.rm = TRUE)
> 6.4, ]
dim(consensusGsets)
## And let's see from which sets are them
table(consensusGsets$GS_Name)


###################################################
### code chunk number 20: MIGSA.Rnw:766-773
###################################################
# it is the same code as below, but saving the pdf to correctly load it in tex
pdf("bcMigsaResGenesHeatmap.pdf")
aux <- genesHeatmap(bcMigsaRes,
  enrFilter = 6.4, gsFilter = 70,
  dendrogram = "col"
)
dev.off()


###################################################
### code chunk number 21: MIGSAres exploring4 (eval = FALSE)
###################################################
## ## Moreover, let's see which are the genes that are mostly contributing
## ## to gene set enrichment (genes contributing in at least 70 gene sets)
## ## i.e. a heat map showing the number of datasets in which each gene (columns)
## ## contributed to enrich each gene set (rows).
## aux <- genesHeatmap(bcMigsaRes,
##   enrFilter = 6.4, gsFilter = 70,
##   dendrogram = "col"
## )


###################################################
### code chunk number 22: MIGSAres exploring5
###################################################
## Well, we could continue exploring them, however, at the first heat map we
## can see that TCGA datasets are defining a separate cluster, this is caused
## by a big group of gene sets that seem to be enriched mainly by TCGA.
## Let's explore them:
## (gene sets enriched by both TCGA datasets and in less than 20% of the other)
tcgaExclusive <- bcMigsaRes[
  rowSums(bcMigsaRes[, c("tcgaMA", "tcgaRNA")], na.rm = TRUE) == 2 &
    rowSums(bcMigsaRes[, c("mainz", "nki", "transbig", "unt", "upp", "vdx")],
      na.rm = TRUE
    ) < 1.2,
]
dim(tcgaExclusive)
table(tcgaExclusive$GS_Name)
## Let's see which is this KEGG enriched gene set
tcgaExclusive[ tcgaExclusive$GS_Name == "KEGG_2015", "id" ]
## Let's see in which depths of the GO tree are these gene sets
table(getHeights(
  tcgaExclusive[ tcgaExclusive$GS_Name != "KEGG_2015", "id", drop = TRUE]
))
## We can see that the most of the gene sets are between depths three and five


###################################################
### code chunk number 23: MIGSA.Rnw:812-816
###################################################
# it is the same code as below, but saving the pdf to correctly load it in tex
pdf("tcgaExclusiveMigsaGoTreeMF.pdf")
aux <- migsaGoTree(tcgaExclusive, ont = "MF")
dev.off()


###################################################
### code chunk number 24: MIGSAres exploring6_1 (eval = FALSE)
###################################################
## ## And plot the GO tree of the other gene sets (except of CC, as it
## ## has only three gene sets, and it will look bad)
## aux <- migsaGoTree(tcgaExclusive, ont = "MF")


###################################################
### code chunk number 25: MIGSA.Rnw:827-831
###################################################
# it is the same code as below, but saving the pdf to correctly load it in tex
pdf("tcgaExclusiveMigsaGoTreeBP.pdf")
aux <- migsaGoTree(tcgaExclusive, ont = "BP")
dev.off()


###################################################
### code chunk number 26: MIGSAres exploring6_2 (eval = FALSE)
###################################################
## aux <- migsaGoTree(tcgaExclusive, ont = "BP")


###################################################
### code chunk number 27: MIGSA.Rnw:840-844
###################################################
# it is the same code as below, but saving the pdf to correctly load it in tex
pdf("tcgaExclusiveGenesBarplot.pdf")
mostEnrichedGenes <- genesBarplot(tcgaExclusive, gsFilter = 12.45)
dev.off()


###################################################
### code chunk number 28: MIGSAres exploring6_3 (eval = FALSE)
###################################################
## ## Let's explore which are the genes that repeat the most in these
## ## gene sets (that are present in at least 15% of the gene sets)
## ## i.e. a bar plot of the number of gene sets in which each gene contributed to
## ## enrich.
## mostEnrichedGenes <- genesBarplot(tcgaExclusive, gsFilter = 12.45)


###################################################
### code chunk number 29: MIGSAres exploring7
###################################################
mostEnrichedGenes$data
## Gene 652 is contributing to enrichment in 15 gene sets. And in total
## there are 6 genes that are being really active in TCGA enriched
## gene sets
tcgaImportantGenes <- as.character(mostEnrichedGenes$data$id)


###################################################
### code chunk number 30: MIGSA.Rnw:865-869
###################################################
# it is the same code as below, but saving the pdf to correctly load it in tex
pdf("consensusGsetsGenesBarplot.pdf")
consMostEnrichedGenes <- genesBarplot(consensusGsets, gsFilter = 53.25)
dev.off()


###################################################
### code chunk number 31: MIGSAres exploring8 (eval = FALSE)
###################################################
## ## Let's do the same analysis for the rest of the datasets, so we can filtrate
## ## which genes are acting exclusively in TCGA datasets
## consMostEnrichedGenes <- genesBarplot(consensusGsets, gsFilter = 53.25)


###################################################
### code chunk number 32: MIGSAres exploring9
###################################################
consImportantGenes <- as.character(consMostEnrichedGenes$data$id)
## Let's see which genes they share
intersect(tcgaImportantGenes, consImportantGenes)
## And get the really tcga exclusive genes (5 genes)
tcgaExclGenes <- setdiff(tcgaImportantGenes, consImportantGenes)


###################################################
### code chunk number 33: MIGSAres exploring10
###################################################
## Let's sample 4 genes from consImportantGenes (as if they are our interest
## genes)
set.seed(8818)
myInterestGenes <- sample(consImportantGenes, 4)
## So we can get the filtered MIGSAres object by doing:
intGenesMigsa <- filterByGenes(bcMigsaRes, myInterestGenes)
dim(intGenesMigsa)
head(intGenesMigsa)


###################################################
### code chunk number 34: Session Info
###################################################
sessionInfo()

Try the MIGSA package in your browser

Any scripts or data that you put into this service are public.

MIGSA documentation built on Nov. 8, 2020, 8:26 p.m.