summarize: Summarize the object of S4 class 'BetaMixture' or 'PAN'

Description Usage Arguments Details Author(s) References Examples

Description

The function helps print a summary of an object of S4 class BetaMixture or PAN.

Usage

1
summarize(object, what='ALL', ...) 

Arguments

object

an object of S4 class BetaMixture or PAN.

what

a character value specifying what to print (see details).

...

not in use, only for further extension.

Details

This function print a summary of an object of BetaMixture or PAN. The function is also called by S4 method show, which prints only a short message about the input parameters and data.

For an object of class BetaMixture:

If what='input', the function prints to screen a summary of input parameters; If what='fitNULL', the function prints to screen a summary of fitting results for the NULL distribution. If what='fitBM', the function prints to screen a summary of fitting results for the beta-mixture model. If what='ALL', all above messages will be printed.

For an object of class PAN:

If what='input', the function prints to screen a summary of input object(s) of class BetaMixture; If what='graph', the function prints to screen a summary of inferred posterior association network; If what='module', the function prints to screen a summary of functional gene modules; If what='ALL', all above messages will be printed.

Author(s)

Xin Wang xw264@cam.ac.uk

References

Xin Wang, Mauro Castro, Klaas W. Mulder and Florian Markowetz, Posterior association networks and enriched functional gene modules inferred from rich phenotypic perturbation screens, in preparation.

Examples

1
2
data(bm)
summarize(bm1, what='ALL')

Example output

Loading required package: igraph

Attaching package:igraphThe following objects are masked frompackage:stats:

    decompose, spectrum

The following object is masked frompackage:base:

    union


-input 
phenotype partition     model    metric 
  273 x 7      None    global    cosine 

-NULL fitting 
           No. of perm       summarize method     permutation method 
                    10                 median                    all 
shape1 (start->fitted) shape2 (start->fitted) 
              4->2.990               4->2.938 

-Beta-Mixture model fitting
--parameters: 
                 z (init)            shapes(- init)            shapes(x init) 
                     None        shape1=2, shape2=4 shape1=2.99, shape2=2.990 
           shapes(+ init)                     gamma 
       shape1=4, shape2=2                      None 
--control arguments: 
     fitNULL    tolerance maxIteration 
       FALSE          0.1          Inf 
--results: 
           shapes(- fitted)            shapes(x fitted) 
shape1=3.031, shape2=11.404  shape1=2.990, shape2=2.938 
           shapes(+ fitted)                 pi (fitted) 
 shape1=8.429, shape2=1.650           0.260,0.491,0.249 
                        NLL 
                  16749.304 

PANR documentation built on Nov. 8, 2020, 8:15 p.m.