Description Usage Arguments Details Value Author(s) References Examples
The function employs the R package pvclust
to search significant
functional gene modules using hierarchical clustering with bootstrap
resampling.
1 2 | pvclustModule(object, nboot=1000, metric="cosine", hclustMethod="average",
filter=TRUE, verbose=TRUE, ...)
|
object |
an object of S4 class |
nboot |
a numeric value giving the number of bootstraps for |
metric |
a character value specifying which distance metric to use for the hierarchical
clustering: 'correlation', 'cosine', 'abscor' or those allowed by the argument
'method' in |
hclustMethod |
the agglomerative method used in hierarchical clustering: 'average', 'ward',
'single', 'complete', 'mcquitty', 'median' or 'centroid' (see the argument
|
filter |
a logical value specifying whether or not to filter out screening data of genes without significant associations with all the other genes. |
verbose |
a logical value to switch on (if |
... |
all the other arguments accepted by the function |
This function performs hierarchical clustering with bootstrap resampling
to quantify significance of gene clusters (modules) based on the package
pvclust
.
This function will return an object of class PAN
with inferred
gene modules (modules$clusters
) and corresponding p-values (modules$pval
)
updated in slot 'modules'.
Xin Wang xw264@cam.ac.uk
Xin Wang, Mauro Castro, Klaas W. Mulder and Florian Markowetz, Posterior association networks and enriched functional gene modules inferred from rich phenotypic perturbation screens, in preparation.
R. Suzuki and H. Shimodaira. Pvclust: an r package for assessing the uncertainty in hierarchical clustering. Bioinformatics, 22(12):1540, 2006.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | ## Not run:
data(bm, package="PANR")
pan<-new("PAN", bm1=bm1)
pan<-infer(pan, para=list(type="SNR", log=TRUE, sign=TRUE, cutoff=log(5)),
filter=FALSE, verbose=TRUE)
data(Bakal2007Cluster, package="PANR")
pan<-buildPAN(pan, engine="igraph", para=list(nodeColor=nodeColor,
hideNeg=TRUE), verbose=TRUE)
##need pvclust to search modules
library(pvclust)
pan<-pvclustModule(pan, nboot=1000, metric="cosine",
hclustMethod="average", filter=TRUE, verbose=TRUE, r=c(5:12/7))
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.