Nothing
#' Evaluation of RIVER
#'
#' \code{evaRIVER} trains RIVER by holding out a list of individual and gene
#' pairs having same rare variants for evaluation, computes test
#' posterior probabilities of FR for 1st individual, and compares
#' them with outlier status of 2nd individual from the list.
#'
#' @param dataInput An object of ExpressionSet class which contains input data
#' required for all functions in RIVER including genomic features,
#' outlier status, and N2 pairs.
#' @param pseudoc Pseudo count.
#' @param theta_init Initial values of theta.
#' @param costs Candidate penalty parameter values for L2-regularized logistic
#' regression.
#' @param verbose Logical option for showing extra information on progress.
#'
#' @return A list which contains two AUC values from RIVER and GAM, computed
#' specificities and sensitivities from two models, and P-value of
#' comparing the two AUC values.
#'
#' @section Warning: A vector of candidate penalty values make \code{glmnet}
#' faster than to input a single penalty value
#'
#' @author Yungil Kim, \email{ipw012@@gmail.com}
#' @seealso \code{\link[glmnet]{cv.glmnet}}, \code{\link{predict}},
#' \code{\link{integratedEM}}, \code{\link{testPosteriors}},
#' \code{\link{getData}}, \code{\link[Biobase]{exprs}}
#'
#' @examples
#' dataInput <- getData(filename=system.file("extdata", "simulation_RIVER.gz",
#' package = "RIVER"), ZscoreThrd=1.5)
#' evaROC <- evaRIVER(dataInput, verbose=TRUE)
#'
#' @export
evaRIVER <- function(dataInput, pseudoc=50,
theta_init=matrix(c(.99, .01, .3, .7), nrow=2),
costs=c(100, 10, 1, .1, .01, 1e-3, 1e-4),
verbose=FALSE) {
## Extract required data for evaRIVER
# all genomic features (G)
FeatAll <- t(exprs(dataInput))
# all outlier status (E)
OutAll <- as.numeric(unlist(dataInput$Outlier))-1
# G for training models
FeatTrng <- t(exprs(dataInput[,is.na(dataInput$N2pair)]))
# E for training models
OutTrng <- as.numeric(unlist(dataInput$Outlier
[is.na(dataInput$N2pair)]))-1
# G for test
FeatTest <-
t(cbind(exprs(dataInput[,!is.na(dataInput$N2pair)])
[,seq(from=1,to=sum(!is.na(dataInput$N2pair)),by=2)],
exprs(dataInput[,!is.na(dataInput$N2pair)])
[,seq(from=2,to=sum(!is.na(dataInput$N2pair)),by=2)]))
# E for test (1st and then 2nd individuals from N2 pairs)
OutTest1 <-
as.numeric(unlist(
c(dataInput$Outlier[!is.na(dataInput$N2pair)]
[seq(from=1,to=sum(!is.na(dataInput$N2pair)),by=2)],
dataInput$Outlier[!is.na(dataInput$N2pair)]
[seq(from=2,to=sum(!is.na(dataInput$N2pair)),by=2)])))-1
# E for test (2nd and then 1st individuals from N2 pairs)
OutTest2 <-
as.numeric(unlist(
c(dataInput$Outlier[!is.na(dataInput$N2pair)]
[seq(from=2,to=sum(!is.na(dataInput$N2pair)),by=2)],
dataInput$Outlier[!is.na(dataInput$N2pair)]
[seq(from=1,to=sum(!is.na(dataInput$N2pair)),by=2)])))-1
## Standardization
meanFeat <- apply(FeatAll, 2, mean)
sdFeat <- apply(FeatAll,2,sd)
FeatAll <- scale(FeatAll, center=meanFeat, scale=sdFeat)
FeatTrng <- scale(FeatTrng, center=meanFeat, scale=sdFeat)
## Search a best lambda from a multivariate logistic regression
## with outlier status with 10 cross-validation
## GAM (genomeic annotation model)
logisticCV <- cv.glmnet(FeatTrng, as.vector(OutTrng), lambda=costs,
family="binomial", alpha=0, nfolds=10)
if (verbose) {
cat(' *** best lambda = ',logisticCV$lambda.min,' *** \n\n', sep='')
}
## Compute a P(FR | G) for all data
postprobTest <-
predict(logisticCV, FeatTest, s="lambda.min", type="response")
## Train RIVER on training data
emModel <- integratedEM(FeatTrng, OutTrng, logisticCV$lambda.min,
logisticCV$glmnet.fit, pseudoc,
theta_init, costs, verbose)
# ## Generate G data for test data (Revised)
FeatTest <- scale(FeatTest, center=meanFeat, scale=sdFeat)
## Compute P(FR | G, E)
dup.post <- testPosteriors(FeatTest, OutTest1, emModel)
## Check performance of models with N2 pairs
RIVER.roc <- roc(OutTest2, dup.post$posterior[,2]) # RIVER
GAM.roc <- roc(OutTest2, as.numeric(postprobTest)) # GAM
if (verbose) {
cat('*** AUC (GAM - genomic annotation model): ',round(GAM.roc$auc,3),
'\n AUC (RIVER): ',round(RIVER.roc$auc,3),'\n P-value: ',
format.pval(roc.test(RIVER.roc, GAM.roc)$p.value,digits=2,eps=0.001),
'***\n\n')
}
evaROC <-
list(RIVER_sens=RIVER.roc$sensitivities,
RIVER_spec=RIVER.roc$specificities,
RIVER_auc=RIVER.roc$auc[1],
GAM_sens=GAM.roc$sensitivities,
GAM_spec=GAM.roc$specificities,
GAM_auc=GAM.roc$auc[1],
pvalue=roc.test(RIVER.roc, GAM.roc)$p.value)
class(evaROC) <- "eval"
return(evaROC)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.