Description Usage Arguments Issues Author(s) See Also Examples
Function creates boxplots (geom_boxplot) for TCGA Datasets.
1 2 |
data |
A data.frame from TCGA study containing variables to be plotted. |
x |
A character name of variable containing groups. |
y |
A character name of continous variable to be plotted. |
fill |
A character names of fill variable. By default, the same as |
coord.flip |
Whether to flip coordinates. |
facet.names |
A character of length maximum 2 containing names of variables to produce facets. See examples. |
ylab |
The name of y label. Remember about |
xlab |
The name of x label. Remember about |
legend.title |
A character with legend's title. |
legend |
A character specifying legend position. Allowed values are one of c("top", "bottom", "left", "right", "none"). Default is "top" side position. to remove the legend use legend = "none". |
... |
Further arguments passed to geom_boxplot. |
If you have any problems, issues or think that something is missing or is not clear please post an issue on https://github.com/RTCGA/RTCGA/issues.
Marcin Kosinski, m.p.kosinski@gmail.com
RTCGA website http://rtcga.github.io/RTCGA/Visualizations.html.
Other RTCGA: RTCGA-package
,
checkTCGA
, convertTCGA
,
datasetsTCGA
, downloadTCGA
,
expressionsTCGA
, heatmapTCGA
,
infoTCGA
, installTCGA
,
kmTCGA
, mutationsTCGA
,
pcaTCGA
, readTCGA
,
survivalTCGA
, theme_RTCGA
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | library(RTCGA.rnaseq)
# perfrom plot
library(dplyr)
expressionsTCGA(ACC.rnaseq, BLCA.rnaseq, BRCA.rnaseq, OV.rnaseq,
extract.cols = "MET|4233") %>%
rename(cohort = dataset,
MET = `MET|4233`) %>%
#cancer samples
filter(substr(bcr_patient_barcode, 14, 15) == "01") -> ACC_BLCA_BRCA_OV.rnaseq
boxplotTCGA(ACC_BLCA_BRCA_OV.rnaseq, "cohort", "MET")
boxplotTCGA(ACC_BLCA_BRCA_OV.rnaseq, "cohort", "log1p(MET)")
boxplotTCGA(ACC_BLCA_BRCA_OV.rnaseq, "reorder(cohort,log1p(MET), median)", "log1p(MET)")
boxplotTCGA(ACC_BLCA_BRCA_OV.rnaseq, "reorder(cohort,log1p(MET), max)", "log1p(MET)")
boxplotTCGA(ACC_BLCA_BRCA_OV.rnaseq, "reorder(cohort,log1p(MET), median)", "log1p(MET)",
xlab = "Cohort Type", ylab = "Logarithm of MET")
boxplotTCGA(ACC_BLCA_BRCA_OV.rnaseq, "reorder(cohort,log1p(MET), median)", "log1p(MET)",
xlab = "Cohort Type", ylab = "Logarithm of MET", legend.title = "Cohorts")
boxplotTCGA(ACC_BLCA_BRCA_OV.rnaseq, "reorder(cohort,log1p(MET), median)", "log1p(MET)",
xlab = "Cohort Type", ylab = "Logarithm of MET", legend.title = "Cohorts", legend = "bottom")
## facet example
library(RTCGA.mutations)
library(dplyr)
mutationsTCGA(BRCA.mutations, OV.mutations, ACC.mutations, BLCA.mutations) %>%
filter(Hugo_Symbol == 'TP53') %>%
filter(substr(bcr_patient_barcode, 14, 15) == "01") %>% # cancer tissue
mutate(bcr_patient_barcode = substr(bcr_patient_barcode, 1, 12)) -> ACC_BLCA_BRCA_OV.mutations
mutationsTCGA(BRCA.mutations, OV.mutations, ACC.mutations, BLCA.mutations) -> ACC_BLCA_BRCA_OV.mutations_all
ACC_BLCA_BRCA_OV.rnaseq %>%
mutate(bcr_patient_barcode = substr(bcr_patient_barcode, 1, 15)) %>%
filter(bcr_patient_barcode %in%
substr(ACC_BLCA_BRCA_OV.mutations_all$bcr_patient_barcode, 1, 15)) %>%
# took patients for which we had any mutation information
# so avoided patients without any information about mutations
mutate(bcr_patient_barcode = substr(bcr_patient_barcode, 1, 12)) %>%
# strin_length(ACC_BLCA_BRCA_OV.mutations$bcr_patient_barcode) == 12
left_join(ACC_BLCA_BRCA_OV.mutations,
by = "bcr_patient_barcode") %>% #joined only with tumor patients
mutate(TP53 = ifelse(!is.na(Variant_Classification), "Mut", "WILD")) %>%
select(cohort, MET, TP53) -> ACC_BLCA_BRCA_OV.rnaseq_TP53mutations
boxplotTCGA(ACC_BLCA_BRCA_OV.rnaseq_TP53mutations,
"reorder(cohort,log1p(MET), median)", "log1p(MET)",
xlab = "Cohort Type", ylab = "Logarithm of MET",
legend.title = "Cohorts", legend = "bottom",
facet.names = c("TP53"))
boxplotTCGA(ACC_BLCA_BRCA_OV.rnaseq_TP53mutations,
"reorder(cohort,log1p(MET), median)", "log1p(MET)",
xlab = "Cohort Type", ylab = "Logarithm of MET",
legend.title = "Cohorts", legend = "bottom",
fill = c("TP53"))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.