Description Usage Arguments Details Value Issues Author(s) See Also Examples
readTCGA
function allows to read unzipped files:
clinical data - Merge_Clinical.Level_1
rnaseq data (genes' expressions) - rnaseqv2__illuminahiseq_rnaseqv2
genes' mutations data - Mutation_Packager_Calls.Level
Reverse phase protein array data (RPPA) - protein_normalization__data.Level_3
Merge transcriptome agilent data (mRNA) -
Merge_transcriptome__agilentg4502a_07_3__unc_edu__Level_3__unc_lowess_normalization_gene_level__data.Level_3
miRNASeq data -
Merge_mirnaseq__illuminaga_mirnaseq__bcgsc_ca__Level_3__miR_gene_expression__data.Level_3
or
"Merge_mirnaseq__illuminahiseq_mirnaseq__bcgsc_ca__Level_3__miR_gene_expression__data.Level_3"
methylation data -
Merge_methylation__humanmethylation27
isoforms data -
Merge_rnaseqv2__illuminahiseq_rnaseqv2__unc_edu__Level_3__RSEM_isoforms_normalized__data.Level_3
from TCGA project. Those files can be easily downloded with downloadTCGA function. See examples.
1 |
path |
See details and examples. |
dataType |
One of |
... |
Further arguments passed to the as.data.frame. |
All cohort names can be checked using: sub( x = names( infoTCGA() ), '-counts', '')
.
Parameter path
specification:
If dataType = 'clinical'
a path to a cancerType.clin.merged.txt
file.
If dataType = 'mutations'
a path to the unzziped folder Mutation_Packager_Calls.Level
containing .maf
files.
If dataType = 'rnaseq'
a path to the uzziped file rnaseqv2__illuminahiseq_rnaseqv2__unc_edu__Level_3__RSEM_genes_normalized__data.Level
.
If dataType = 'RPPA'
a path to the unzipped file in folder protein_normalization__data.Level_3
.
If dataType = 'mRNA'
a path to the unzipped file cancerType.transcriptome__agilentg4502a_07_3__unc_edu__Level_3__unc_lowess_normalization_gene_level__data.data.txt
.
If dataType = 'miRNASeq'
a path to unzipped files cancerType.mirnaseq__illuminahiseq_mirnaseq__bcgsc_ca__Level_3__miR_gene_expression__data.data.txt
or cancerType.mirnaseq__illuminaga_mirnaseq__bcgsc_ca__Level_3__miR_gene_expression__data.data.txt
If dataType = 'methylation'
a path to unzipped files cancerType.methylation__humanmethylation27__jhu_usc_edu__Level_3__within_bioassay_data_set_function__data.data.txt
.
If dataType = 'isoforms'
a path to unzipped files cancerType.rnaseqv2__illuminahiseq_rnaseqv2__unc_edu__Level_3__RSEM_isoforms_normalized__data.data.txt
.
An output:
If dataType = 'clinical'
a data.frame
with clinical data.
If dataType = 'rnaseq'
a data.frame
with rnaseq data.
If dataType = 'mutations'
a data.frame
with mutations data.
If dataType = 'RPPA'
a data.frame
with RPPA data.
If dataType = 'mRNA'
a data.frame
with mRNA data.
If dataType = 'miRNASeq'
a data.frame
with miRNASeq data.
If dataType = 'methylation'
a data.frame
with methylation data.
If dataType = 'isoforms'
a data.frame
with isoforms data.
If you have any problems, issues or think that something is missing or is not clear please post an issue on https://github.com/RTCGA/RTCGA/issues.
Marcin Kosinski, m.p.kosinski@gmail.com
Witold Chodor, witoldchodor@gmail.com
RTCGA website http://rtcga.github.io/RTCGA/Download.html.
Other RTCGA: RTCGA-package
,
boxplotTCGA
, checkTCGA
,
convertTCGA
, datasetsTCGA
,
downloadTCGA
,
expressionsTCGA
, heatmapTCGA
,
infoTCGA
, installTCGA
,
kmTCGA
, mutationsTCGA
,
pcaTCGA
, survivalTCGA
,
theme_RTCGA
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 | ## Not run:
##############
##### clinical
##############
dir.create('data')
# downloading clinical data
# dataset = "clinical" is default parameter so we may omit it
downloadTCGA( cancerTypes = c('BRCA', 'OV'),
destDir = 'data' )
# reading datasets
sapply( c('BRCA', 'OV'), function( element ){
folder <- grep( paste0( '(_',element,'\\.', '|','_',element,'-FFPE)', '.*Clinical'),
list.files('data/'),value = TRUE)
path <- paste0( 'data/', folder, '/', element, '.clin.merged.txt')
assign( value = readTCGA( path, 'clinical' ),
x = paste0(element, '.clin.data'), envir = .GlobalEnv)
})
############
##### rnaseq
############
dir.create('data2')
# downloading rnaseq data
downloadTCGA( cancerTypes = 'BRCA',
dataSet = 'rnaseqv2__illuminahiseq_rnaseqv2__unc_edu__Level_3__RSEM_genes_normalized__data.Level',
destDir = 'data2' )
# shortening paths and directories
list.files( 'data2/') %>%
file.path( 'data2', .) %>%
file.rename( to = substr(.,start=1,stop=50))
# reading data
list.files( 'data2/') %>%
file.path( 'data2', .) -> folder
folder %>%
list.files %>%
file.path( folder, .) %>%
grep( pattern = 'illuminahiseq', x = ., value = TRUE) -> pathRNA
readTCGA( path = pathRNA, dataType = 'rnaseq' ) -> my_data
###############
##### mutations
###############
# Example directory in which untarred data will be stored
dir.create('data3')
downloadTCGA( cancerTypes = 'OV',
dataSet = 'Mutation_Packager_Calls.Level',
destDir = 'data3' )
# reading data
list.files( 'data3/') %>%
file.path( 'data3', .) -> folder
readTCGA(folder, 'mutations') -> mut_file
#################
##### methylation
#################
# Example directory in which untarred data will be stored
dir.create('data4')
# Download KIRP methylation data and store it in data4 folder
cancerType = "KIRP"
downloadTCGA(cancerTypes = cancerType,
dataSet = "Merge_methylation__humanmethylation27",
destDir = "data4")
# Shorten path of subdirectory with KIRP methylation data
list.files(path = "data4", full.names = TRUE) %>%
file.rename(from = ., to = file.path("data4", paste0(cancerType, ".methylation")))
# Remove manifest.txt file
list.files(path = "data4", full.names = TRUE) %>%
list.files(path = ., full.names = TRUE) %>%
grep("MANIFEST.txt", x = ., value = TRUE) %>%
file.remove()
# Read KIRP methylation data
path <- list.files(path = "data4", full.names = TRUE) %>%
list.files(path = ., full.names = TRUE)
KIRP.methylation <- readTCGA(path, dataType = "methylation")
##########
##### RPPA
##########
# Directory in which untarred data will be stored
dir.create('data5')
# Download BRCA RPPA data and store it in data5 folder
cancerType = "BRCA"
downloadTCGA(cancerTypes = cancerType,
dataSet = "protein_normalization__data.Level_3",
destDir = "data5")
# Shorten path of subdirectory with BRCA RPPA data
list.files(path = "data5", full.names = TRUE) %>%
file.rename(from = ., to = file.path("data5", paste0(cancerType, ".RPPA")))
# Remove manifest.txt file
list.files(path = "data5", full.names = TRUE) %>%
list.files(path = ., full.names = TRUE) %>%
grep("MANIFEST.txt", x = ., value = TRUE) %>%
file.remove()
# Read BRCA RPPA data
path <- list.files(path = "data5", full.names = TRUE) %>%
list.files(path = ., full.names = TRUE)
BRCA.RPPA <- readTCGA(path, dataType = "RPPA")
##########
##### mRNA
##########
# Directory in which untarred data will be stored
dir.create('data6')
# Download UCEC mRNA data and store it in data6 folder
cancerType = "UCEC"
downloadTCGA(cancerTypes = cancerType,
dataSet = "Merge_transcriptome__agilentg4502a_07_3__unc_edu__Level_3__unc_lowess_normalization_gene_level__data.Level_3",
destDir = "data6")
# Shorten path of subdirectory with UCEC mRNA data
list.files(path = "data6", full.names = TRUE) %>%
file.rename(from = ., to = file.path("data6",paste0(cancerType, ".mRNA")))
# Remove manifest.txt file
list.files(path = "data6", full.names = TRUE) %>%
list.files(path = ., full.names = TRUE) %>%
grep("MANIFEST.txt", x = ., value = TRUE) %>%
file.remove()
# Read UCEC mRNA data
path <- list.files(path = "data6", full.names = TRUE) %>%
list.files(path = ., full.names = TRUE)
UCEC.mRNA <- readTCGA(path, dataType = "mRNA")
##############
##### miRNASeq
##############
# Directory in which untarred data will be stored
dir.create('data7')
# Download BRCA miRNASeq data and store it in data7 folder
# Remember that miRNASeq data are produced by two machines:
# Illumina Genome Analyzer and Illumina HiSeq 2000 machines
cancerType <- "BRCA"
downloadTCGA(cancerTypes = cancerType,
dataSet = "Merge_mirnaseq__illuminaga_mirnaseq__bcgsc_ca__Level_3__miR_gene_expression__data.Level_3",
destDir = "data7")
downloadTCGA(cancerTypes = cancerType,
dataSet = "Merge_mirnaseq__illuminahiseq_mirnaseq__bcgsc_ca__Level_3__miR_gene_expression__data.Level_3",
destDir = "data7")
# Shorten path of subdirectory with BRCA miRNASeq data
list.files(path = "data7", full.names = TRUE) %>%
sapply(function(path){
if (grepl(pattern = "illuminaga", path)){
file.rename(from = grep(pattern = "illuminaga", path, value = TRUE),
to = file.path("data7",paste0(cancerType, ".miRNASeq.illuminaga")))
} else if (grepl(pattern = "illuminahiseq", path)){
file.rename(from = grep(pattern = "illuminahiseq", path, value = TRUE),
to = file.path("data7",paste0(cancerType, ".miRNASeq.illuminahiseq")))
}
})
# Remove manifest.txt file
list.files(path = "data7", full.names = TRUE) %>%
list.files(path = ., full.names = TRUE) %>%
grep("MANIFEST.txt", x = ., value = TRUE) %>%
file.remove()
# Read BRCA miRNASeq data
path <- list.files(path = "data7", full.names = TRUE) %>%
list.files(path = ., full.names = TRUE)
path_illuminaga <- grep("illuminaga", path, fixed = TRUE, value = TRUE)
path_illuminahiseq <- grep("illuminahiseq", path, fixed = TRUE, value = TRUE)
BRCA.miRNASeq.illuminaga <- readTCGA(path_illuminaga, dataType = "miRNASeq")
BRCA.miRNASeq.illuminahiseq <- readTCGA(path_illuminahiseq, dataType = "miRNASeq")
BRCA.miRNASeq.illuminaga <- cbind(machine = "Illumina Genome Analyzer", BRCA.miRNASeq.illuminaga)
BRCA.miRNASeq.illuminahiseq <- cbind(machine = "Illumina HiSeq 2000", BRCA.miRNASeq.illuminahiseq)
BRCA.miRNASeq <- rbind(BRCA.miRNASeq.illuminaga, BRCA.miRNASeq.illuminahiseq)
##############
##### isoforms
##############
# Directory in which untarred data will be stored
dir.create('data8')
# Download ACC isoforms data and store it in data8 folder
cancerType = "ACC"
downloadTCGA(cancerTypes = cancerType,
dataSet = "Merge_rnaseqv2__illuminahiseq_rnaseqv2__unc_edu__Level_3__RSEM_isoforms_normalized__data.Level_3",
destDir = "data8")
# Shorten path of subdirectory with ACC isoforms data
list.files(path = "data8", full.names = TRUE) %>%
file.rename(from = ., to = file.path("data8",paste0(cancerType, ".isoforms")))
# Remove manifest.txt file
list.files(path = "data8", full.names = TRUE) %>%
list.files(path = ., full.names = TRUE) %>%
grep("MANIFEST.txt", x = ., value = TRUE) %>%
file.remove()
# Read ACC isoforms data
path <- list.files(path = "data8", full.names = TRUE) %>%
list.files(path = ., full.names = TRUE)
ACC.isoforms <- readTCGA(path, dataType = "isoforms")
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.