Description Usage Arguments Value Issues Note Author(s) See Also Examples
Extracts survival information from clicnial datasets from TCGA project.
| 1 2 3 4 5 | survivalTCGA(..., extract.cols = NULL, extract.names = FALSE,
  barcode.name = "patient.bcr_patient_barcode",
  event.name = "patient.vital_status",
  days.to.followup.name = "patient.days_to_last_followup",
  days.to.death.name = "patient.days_to_death")
 | 
| ... | A data.frame or data.frames from TCGA study containing clinical informations. See clinical. | 
| extract.cols | A character specifing the names of extra columns to be extracted with survival information. | 
| extract.names | Logical, whether to extract names of passed data.frames in  | 
| barcode.name | A character with the name of  | 
| event.name | A character with the name of  | 
| days.to.followup.name | A character with the name of  | 
| days.to.death.name | A character with the name of  | 
A data.frame containing information about times and censoring for specific bcr_patient_barcode.
The name passed in barcode.name is changed to bcr_patient_barcode.
If you have any problems, issues or think that something is missing or is not clear please post an issue on https://github.com/RTCGA/RTCGA/issues.
Input data.frames should contain columns patient.bcr_patient_barcode, 
patient.vital_status, patient.days_to_last_followup, patient.days_to_death or theyir previous
equivalents. 
It is recommended to use datasets from clinical.
Marcin Kosinski, m.p.kosinski@gmail.com
Marcin Kosinski, m.p.kosinski@gmail.com
RTCGA website http://rtcga.github.io/RTCGA/Visualizations.html.
Other RTCGA: RTCGA-package,
boxplotTCGA, checkTCGA,
convertTCGA, datasetsTCGA,
downloadTCGA,
expressionsTCGA, heatmapTCGA,
infoTCGA, installTCGA,
kmTCGA, mutationsTCGA,
pcaTCGA, readTCGA,
theme_RTCGA
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | ## Extracting Survival Data
library(RTCGA.clinical)
survivalTCGA(BRCA.clinical, OV.clinical, extract.cols = "admin.disease_code") -> BRCAOV.survInfo
# first munge data, then extract survival info
library(dplyr)
BRCA.clinical %>%
    filter(patient.drugs.drug.therapy_types.therapy_type %in%
               c("chemotherapy", "hormone therapy")) %>%
    rename(therapy = patient.drugs.drug.therapy_types.therapy_type) %>%
    survivalTCGA(extract.cols = c("therapy"))  -> BRCA.survInfo.chemo
                 
# first extract survival info, then munge data                  
    survivalTCGA(BRCA.clinical, 
                 extract.cols = c("patient.drugs.drug.therapy_types.therapy_type"))  %>%
    filter(patient.drugs.drug.therapy_types.therapy_type %in%
               c("chemotherapy", "hormone therapy")) %>%
    rename(therapy = patient.drugs.drug.therapy_types.therapy_type) -> BRCA.survInfo.chemo
## Kaplan-Meier Survival Curves
kmTCGA(BRCAOV.survInfo, explanatory.names = "admin.disease_code",  pval = TRUE)
kmTCGA(BRCAOV.survInfo, explanatory.names = "admin.disease_code", main = "",
       xlim = c(0,4000))
 
kmTCGA(BRCA.survInfo.chemo, explanatory.names = "therapy", xlim = c(0, 3000), conf.int = FALSE)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.