Description Usage Arguments Issues Note Author(s) See Also Examples
Function creates heatmaps (geom_tile) for TCGA Datasets.
1 2 3 |
data |
A data.frame from TCGA study containing variables to be plotted. |
x, y |
A character name of variable containing groups. |
fill |
A character names of fill variable. |
legend.title |
A character with legend's title. |
legend |
A character specifying legend position. Allowed values are one of c("top", "bottom", "left", "right", "none"). Default is "top" side position. to remove the legend use legend = "none". |
title |
A character with plot title. |
facet.names |
A character of length maximum 2 containing names of variables to produce facets. See examples. |
tile.size, tile.color |
A size and color passed to geom_tile. |
... |
Further arguments passed to geom_tile. |
If you have any problems, issues or think that something is missing or is not clear please post an issue on https://github.com/RTCGA/RTCGA/issues.
heatmapTCGA
uses scale_fill_viridis from viridis package which is a port of the new
matplotlib
color maps (viridis - the default -, magma
, plasma
and inferno
) to R
.
matplotlib
http://matplotlib.org/ is a popular plotting library for python
.
These color maps are designed in such a way that they will analytically be perfectly perceptually-uniform,
both in regular form and also when converted to black-and-white.
They are also designed to be perceived by readers with the most common form of color blindness.
Marcin Kosinski, m.p.kosinski@gmail.com
RTCGA website http://rtcga.github.io/RTCGA/Visualizations.html.
Other RTCGA: RTCGA-package
,
boxplotTCGA
, checkTCGA
,
convertTCGA
, datasetsTCGA
,
downloadTCGA
,
expressionsTCGA
, infoTCGA
,
installTCGA
, kmTCGA
,
mutationsTCGA
, pcaTCGA
,
readTCGA
, survivalTCGA
,
theme_RTCGA
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
library(RTCGA.rnaseq)
# perfrom plot
library(dplyr)
expressionsTCGA(ACC.rnaseq, BLCA.rnaseq, BRCA.rnaseq, OV.rnaseq,
extract.cols = c("MET|4233", "ZNF500|26048", "ZNF501|115560")) %>%
rename(cohort = dataset,
MET = `MET|4233`) %>%
#cancer samples
filter(substr(bcr_patient_barcode, 14, 15) == "01") %>%
mutate(MET = cut(MET,
round(quantile(MET, probs = seq(0,1,0.25)), -2),
include.lowest = TRUE,
dig.lab = 5)) -> ACC_BLCA_BRCA_OV.rnaseq
ACC_BLCA_BRCA_OV.rnaseq %>%
select(-bcr_patient_barcode) %>%
group_by(cohort, MET) %>%
summarise_each(funs(median)) %>%
mutate(ZNF500 = round(`ZNF500|26048`),
ZNF501 = round(`ZNF501|115560`)) -> ACC_BLCA_BRCA_OV.rnaseq.medians
heatmapTCGA(ACC_BLCA_BRCA_OV.rnaseq.medians,
"cohort", "MET", "ZNF500", title = "Heatmap of ZNF500 expression")
## facet example
library(RTCGA.mutations)
library(dplyr)
mutationsTCGA(BRCA.mutations, OV.mutations, ACC.mutations, BLCA.mutations) %>%
filter(Hugo_Symbol == 'TP53') %>%
filter(substr(bcr_patient_barcode, 14, 15) == "01") %>% # cancer tissue
mutate(bcr_patient_barcode = substr(bcr_patient_barcode, 1, 12)) -> ACC_BLCA_BRCA_OV.mutations
mutationsTCGA(BRCA.mutations, OV.mutations, ACC.mutations, BLCA.mutations) -> ACC_BLCA_BRCA_OV.mutations_all
ACC_BLCA_BRCA_OV.rnaseq %>%
mutate(bcr_patient_barcode = substr(bcr_patient_barcode, 1, 15)) %>%
filter(bcr_patient_barcode %in%
substr(ACC_BLCA_BRCA_OV.mutations_all$bcr_patient_barcode, 1, 15)) %>%
# took patients for which we had any mutation information
# so avoided patients without any information about mutations
mutate(bcr_patient_barcode = substr(bcr_patient_barcode, 1, 12)) %>%
# strin_length(ACC_BLCA_BRCA_OV.mutations$bcr_patient_barcode) == 12
left_join(ACC_BLCA_BRCA_OV.mutations,
by = "bcr_patient_barcode") %>% #joined only with tumor patients
mutate(TP53 = ifelse(!is.na(Variant_Classification), "Mut", "WILD")) %>%
select(-bcr_patient_barcode, -Variant_Classification, -dataset, -Hugo_Symbol) %>%
group_by(cohort, MET, TP53) %>%
summarise_each(funs(median)) %>%
mutate(ZNF501 = round(`ZNF501|115560`)) -> ACC_BLCA_BRCA_OV.rnaseq_TP53mutations_ZNF501medians
heatmapTCGA(ACC_BLCA_BRCA_OV.rnaseq_TP53mutations_ZNF501medians, "cohort", "MET",
fill = "ZNF501", facet.names = "TP53", title = "Heatmap of ZNF501 expression")
heatmapTCGA(ACC_BLCA_BRCA_OV.rnaseq_TP53mutations_ZNF501medians, "TP53", "MET",
fill = "ZNF501", facet.names = "cohort", title = "Heatmap of ZNF501 expression")
heatmapTCGA(ACC_BLCA_BRCA_OV.rnaseq_TP53mutations_ZNF501medians, "TP53", "cohort",
fill = "ZNF501", facet.names = "MET", title = "Heatmap of ZNF501 expression")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.