inst/doc/RcisTarget.R

## ----libraries, echo=FALSE, message=FALSE, warning=FALSE----------------------
suppressPackageStartupMessages({
library(RcisTarget)
library(RcisTarget.hg19.motifDBs.cisbpOnly.500bp) 
library(DT)
library(data.table)
#require(visNetwork)
})

## ----citation, echo=FALSE-----------------------------------------------------
print(citation("RcisTarget")[1], style="textVersion")

## ----overview, eval=FALSE-----------------------------------------------------
#  library(RcisTarget)
#  
#  # Load gene sets to analyze. e.g.:
#  geneList1 <- read.table(file.path(system.file('examples', package='RcisTarget'), "hypoxiaGeneSet.txt"), stringsAsFactors=FALSE)[,1]
#  geneLists <- list(geneListName=geneList1)
#  # geneLists <- GSEABase::GeneSet(genes, setName="geneListName") # alternative
#  
#  # Select motif database to use (i.e. organism and distance around TSS)
#  data(motifAnnotations_hgnc)
#  motifRankings <- importRankings("~/databases/hg19-tss-centered-10kb-7species.mc9nr.feather")
#  
#  # Motif enrichment analysis:
#  motifEnrichmentTable_wGenes <- cisTarget(geneLists, motifRankings,
#                                 motifAnnot=motifAnnotations_hgnc)

## ----overviewAdvanced, eval=FALSE---------------------------------------------
#  # 1. Calculate AUC
#  motifs_AUC <- calcAUC(geneLists, motifRankings)
#  
#  # 2. Select significant motifs, add TF annotation & format as table
#  motifEnrichmentTable <- addMotifAnnotation(motifs_AUC,
#                            motifAnnot=motifAnnotations_hgnc)
#  
#  # 3. Identify significant genes for each motif
#  # (i.e. genes from the gene set in the top of the ranking)
#  # Note: Method 'iCisTarget' instead of 'aprox' is more accurate, but slower
#  motifEnrichmentTable_wGenes <- addSignificantGenes(motifEnrichmentTable,
#                                                     geneSets=geneLists,
#                                                     rankings=motifRankings,
#                                                     nCores=1,
#                                                     method="aprox")

## ----installDep, eval=FALSE---------------------------------------------------
#  if (!requireNamespace("BiocManager", quietly=TRUE))
#      install.packages("BiocManager")
#  # To support paralell execution:
#  BiocManager::install(c("doMC", "doRNG"))
#  # For the examples in the follow-up section of the tutorial:
#  BiocManager::install(c("DT", "visNetwork"))

## ----vignette, eval=FALSE-----------------------------------------------------
#  # Explore tutorials in the web browser:
#  browseVignettes(package="RcisTarget")
#  
#  # Commnad line-based:
#  vignette(package="RcisTarget") # list
#  vignette("RcisTarget") # open

## ----editRmd, eval=FALSE------------------------------------------------------
#  vignetteFile <- paste(file.path(system.file('doc', package='RcisTarget')),
#                        "RcisTarget.Rmd", sep="/")
#  # Copy to edit as markdown
#  file.copy(vignetteFile, ".")
#  # Alternative: extract R code
#  Stangle(vignetteFile)

## ----geneSets-----------------------------------------------------------------
library(RcisTarget)
geneSet1 <- c("gene1", "gene2", "gene3")
geneLists <- list(geneSetName=geneSet1)
# or: 
# geneLists <- GSEABase::GeneSet(geneSet1, setName="geneSetName") 

## ----geneSetsFormat, eval=FALSE-----------------------------------------------
#  class(geneSet1)
#  class(geneLists)
#  geneSet2 <- c("gene2", "gene4", "gene5", "gene6")
#  geneLists[["anotherGeneSet"]] <- geneSet2
#  names(geneLists)
#  geneLists$anotherGeneSet
#  lengths(geneLists)

## ----sampleGeneSet------------------------------------------------------------
txtFile <- paste(file.path(system.file('examples', package='RcisTarget')),
                 "hypoxiaGeneSet.txt", sep="/")
geneLists <- list(hypoxia=read.table(txtFile, stringsAsFactors=FALSE)[,1])
head(geneLists$hypoxia)

## ----downloadDatabases, eval=FALSE--------------------------------------------
#  featherURL <- "https://resources.aertslab.org/cistarget/databases/homo_sapiens/hg19/refseq_r45/mc9nr/gene_based/hg19-tss-centered-10kb-7species.mc9nr.feather"
#  download.file(featherURL, destfile=basename(featherURL)) # saved in current dir

## ----loadDatabases, eval=FALSE------------------------------------------------
#  # Search space: 10k bp around TSS - HUMAN
#  motifRankings <- importRankings("hg19-tss-centered-10kb-7species.mc9nr.feather")
#  # Load the annotation to human transcription factors
#  data(motifAnnotations_hgnc)

## ----loadAnnot, eval=TRUE-----------------------------------------------------
# mouse:
# data(motifAnnotations_mgi)

# human:
data(motifAnnotations_hgnc)
motifAnnotations_hgnc[199:202,]

## ----motifAnnotQuery----------------------------------------------------------
motifAnnotations_hgnc[(directAnnotation==TRUE) 
                               & 
                               (TF %in% c("HIF1A")), ]

## ----installDatabases, eval=FALSE---------------------------------------------
#  # From Bioconductor
#  if (!requireNamespace("BiocManager", quietly=TRUE))
#      install.packages("BiocManager")
#  BiocManager::install("RcisTarget.hg19.motifDBs.cisbpOnly.500bp")

## ----loadDatabasesCisbpOnly---------------------------------------------------
library(RcisTarget.hg19.motifDBs.cisbpOnly.500bp)
# Rankings
data(hg19_500bpUpstream_motifRanking_cispbOnly)
motifRankings <- hg19_500bpUpstream_motifRanking_cispbOnly
motifRankings

# Annotations
data(hg19_motifAnnotation_cisbpOnly) 
motifAnnotations_hgnc <- hg19_motifAnnotation_cisbpOnly

## ----eval=FALSE---------------------------------------------------------------
#  motifEnrichmentTable_wGenes <- cisTarget(geneLists,
#           motifRankings,
#           motifAnnot=motifAnnotations_hgnc)

## ----calcAUC, cache=TRUE------------------------------------------------------
motifs_AUC <- calcAUC(geneLists, motifRankings, nCores=1)

## ----AUChistogram, cache=TRUE, fig.height=5, fig.width=5----------------------
auc <- getAUC(motifs_AUC)["hypoxia",]
hist(auc, main="hypoxia", xlab="AUC histogram",
     breaks=100, col="#ff000050", border="darkred")
nes3 <- (3*sd(auc)) + mean(auc)
abline(v=nes3, col="red")

## ----addMotifAnnotation, cache=TRUE-------------------------------------------
motifEnrichmentTable <- addMotifAnnotation(motifs_AUC, nesThreshold=3,
     motifAnnot=motifAnnotations_hgnc,
     highlightTFs=list(hypoxia="HIF1A"))

## -----------------------------------------------------------------------------
class(motifEnrichmentTable)
dim(motifEnrichmentTable)
head(motifEnrichmentTable[,-"TF_lowConf", with=FALSE])

## ----addSignificantGenes, cache=TRUE------------------------------------------
motifEnrichmentTable_wGenes <- addSignificantGenes(motifEnrichmentTable,
                      rankings=motifRankings, 
                      geneSets=geneLists)
dim(motifEnrichmentTable_wGenes)

## ----getSignificantGenes, fig.height=7, fig.width=7---------------------------
geneSetName <- "hypoxia"
selectedMotifs <- c("cisbp__M6275", sample(motifEnrichmentTable$motif, 2))
par(mfrow=c(2,2))
getSignificantGenes(geneLists[[geneSetName]], 
                    motifRankings,
                    signifRankingNames=selectedMotifs,
                    plotCurve=TRUE, maxRank=5000, genesFormat="none",
                    method="aprox")

## ----output-------------------------------------------------------------------
motifEnrichmentTable_wGenes_wLogo <- (motifEnrichmentTable_wGenes)

resultsSubset <- motifEnrichmentTable_wGenes_wLogo[1:10,]

library(DT)
datatable(resultsSubset[,-c("enrichedGenes", "TF_lowConf"), with=FALSE], 
          escape = FALSE, # To show the logo
          filter="top", options=list(pageLength=5))

## ----anotatedTfs, cache=TRUE--------------------------------------------------
anotatedTfs <- lapply(split(motifEnrichmentTable_wGenes$TF_highConf,
                            motifEnrichmentTable$geneSet),
                      function(x) {
                        genes <- gsub(" \\(.*\\). ", "; ", x, fixed=FALSE)
                        genesSplit <- unique(unlist(strsplit(genes, "; ")))
                        return(genesSplit)
                        })
                      
anotatedTfs$hypoxia

## ----network, cache=FALSE, eval=FALSE-----------------------------------------
#  signifMotifNames <- motifEnrichmentTable$motif[1:3]
#  
#  incidenceMatrix <- getSignificantGenes(geneLists$hypoxia,
#                                         motifRankings,
#                                         signifRankingNames=signifMotifNames,
#                                         plotCurve=TRUE, maxRank=5000,
#                                         genesFormat="incidMatrix",
#                                         method="aprox")$incidMatrix
#  
#  library(reshape2)
#  edges <- melt(incidenceMatrix)
#  edges <- edges[which(edges[,3]==1),1:2]
#  colnames(edges) <- c("from","to")

## ----visNetwork, eval=FALSE---------------------------------------------------
#  library(visNetwork)
#  motifs <- unique(as.character(edges[,1]))
#  genes <- unique(as.character(edges[,2]))
#  nodes <- data.frame(id=c(motifs, genes),
#        label=c(motifs, genes),
#        title=c(motifs, genes), # tooltip
#        shape=c(rep("diamond", length(motifs)), rep("elypse", length(genes))),
#        color=c(rep("purple", length(motifs)), rep("skyblue", length(genes))))
#  visNetwork(nodes, edges) %>% visOptions(highlightNearest = TRUE,
#                                          nodesIdSelection = TRUE)

## -----------------------------------------------------------------------------
date()
sessionInfo()

Try the RcisTarget package in your browser

Any scripts or data that you put into this service are public.

RcisTarget documentation built on Nov. 8, 2020, 6:57 p.m.