# hyper: Gaussian hypergeometric function for vectorial arguments In Repitools: Epigenomic tools

## Description

Computes the value of the Gaussian hypergeometric function 2_F_1 as defined in Abramowitz and Stegun (1972, page 558), i.e. for |z| < 1 and c > b > 0 using the Cephes library.

## Usage

 `1` ```hyperg2F1_vec(a,b,c,z) ```

## Arguments

 `a` (Vectorial) parameter a. `b` parameter b (of same length as a) `c` parameter c (of same length as a) `z` parameter z (of same length as a)

## Details

The function is in particular efficient for vectorial arguments as the loop is shifted to `C`. Note: If vectorial arguments are provided, all arguments need to be of the same length.

## Value

The value of the Gaussian hypergeometric function F(a,b,c,z) for c > b > 0 and |z| < 1.

## Author(s)

Andrea Riebler and Daniel Sabanes Bove

## References

Abramowitz and Stegun 1972. _Handbook of mathematical functions with formulas, graphs and mathematical tables_. New York: Dowver Publications.

www.netlib.org/cephes/

package `hypergeo` or `BMS`.
 ```1 2 3 4 5 6 7 8``` ``` hyperg2F1_vec(-10.34,2.05,3.05,0.1725) hyperg2F1_vec(30,1,20,.8) # returns about 165.8197 hyperg2F1_vec(30,10,20,0) # returns one hyperg2F1_vec(10,15,20,-0.1) # returns about 0.4872972 hyperg2F1_vec(c(-10.34, 30, 10), c(2.05, 1, 10), c(3.05, 20, 20), c(0.1725, 0.8, 0)) hyperg2F1_vec(a=1.2+1:10/10, b=rep(1.4,10), c=rep(1.665,10), z=rep(.3,10)) ```