inst/doc/SMITE.R

## ---- warning=FALSE, message=FALSE, eval=TRUE, tidy.opts=list(blank=FALSE, width.cutoff=50), echo=TRUE, results='hide'----
options(stringsAsFactors=FALSE)
library(SMITE)

## ---- tidy=TRUE, tidy.opts=list(blank=FALSE, width.cutoff=60), eval=TRUE------
## Load methylation data ##
data(methylationdata)
head(methylation)
## Replace zeros with minimum non-zero p-value ##
methylation[,5] <- replace(methylation[,5], methylation[,5]==0, 
                           min(subset(methylation[,5], methylation[,5]!=0), na.rm=TRUE))

## Remove NAs from p-value column ##
methylation <- methylation[-which(is.na(methylation[, 5])), ] 

## ---- warning=FALSE, tidy=TRUE, tidy.opts=list(blank=FALSE, width.cutoff=60), eval=TRUE----
## Load fake genes to show expression conversion ##
data(genes_for_conversiontest)
genes[,1] <- convertGeneIds(gene_IDs=genes[,1], ID_type="refseq", ID_convert_to="symbol")

## ---- tidy=TRUE, tidy.opts=list(blank=FALSE, width.cutoff=60), eval=FALSE-----
#  ## This is just an example of how to pre-process data ##
#  expression <- expression[-which(is.na(expression[, 1])), ]
#  expression <- split(expression, expression[, 1])
#  expression <- lapply(expression, function(i){
#      if(nrow(as.data.frame(i)) > 1){
#          i <- i[which(i[, 3] == min(i[, 3], na.rm=TRUE))[1], ]
#          }
#      return(i)})
#  expression <- do.call(rbind, expression)
#  expression <- expression[,-1]
#  expression[, 2] <- replace(expression[, 2],expression[, 2] == 0,
#                            min(subset(expression[, 2], expression[, 2] != 0), na.rm=TRUE))

## ---- warning=FALSE, tidy=TRUE, tidy.opts=list(blank=FALSE, width.cutoff=60), eval=TRUE----
## Load expression data ##
data(curated_expressiondata)

## View data ##
head(expression_curated)


## ---- tidy=TRUE, tidy.opts=list(blank=FALSE, width.cutoff=60), eval=TRUE------
## Load hg19 gene annotation BED file ##
data(hg19_genes_bed)

## Load histone modification file ##
data(histone_h3k4me1)

## View files ##
head(hg19_genes)
head(h3k4me1)

## ---- tidy=TRUE, tidy.opts=list(blank=FALSE, width.cutoff=50), eval=TRUE------
test_annotation <- makePvalueAnnotation(data=hg19_genes, other_data=list(h3k4me1=h3k4me1), 
                                        gene_name_col=5, other_tss_distance=5000, 
                                        promoter_upstream_distance=1000, promoter_downstream_distance=1000) 

## ----  tidy=TRUE, tidy.opts=list(blank=FALSE, width.cutoff=50), eval=TRUE-----
test_annotation <- annotateExpression(pvalue_annotation=test_annotation, expr_data=expression_curated, 
                                      effect_col=1, pval_col=2)

## ---- tidy=TRUE, tidy.opts=list(blank=FALSE, width.cutoff=45), eval=FALSE-----
#  test_annotation <- annotateModification(test_annotation, methylation, weight_by_method="Stouffer",
#                                        weight_by=c(promoter="distance", body="distance", h3k4me1="distance"),
#                                        verbose=TRUE, mod_corr=FALSE, mod_type="methylation")

## ---- tidy=TRUE, tidy.opts=list(blank=FALSE, width.cutoff=50), eval=FALSE, fig.width= 9----
#  ## See expression data ##
#  head(extractExpression(test_annotation))
#  
#  ## See the uncombined p-values for a specific or all modType(s) ##
#  extractModification(test_annotation, mod_type="methylation")
#  
#  ## See the combined p-value data.frame ##
#  head(extractModSummary(test_annotation))

## ----  tidy=TRUE, tidy.opts=list(blank=FALSE, width.cutoff=35), eval=FALSE----
#  test_annotation <- makePvalueObject(test_annotation, effect_directions=c(methylation_promoter="decrease",
#                                                                           methylation_body="increase", methylation_h3k4me1="bidirectional"))

## ---- echo=FALSE, eval=TRUE---------------------------------------------------
## Because runSpinglass and scorePval are computationally intensive we simply load already ran data instead of evaluating the code.
data(test_annotation_score_data)

## ----  tidy=TRUE, tidy.opts=list(blank=FALSE, width.cutoff=35), eval=TRUE-----
## Plot density of p-values ##
plotDensityPval(pvalue_annotation=test_annotation, ref="expression")

## ----  tidy=TRUE, tidy.opts=list(blank=FALSE, width.cutoff=35), eval=TRUE, fig.width=9, fig.height=5----
## Normalize the p-values to the range of expression ##
test_annotation <- normalizePval(test_annotation, ref="expression", 
                                 method="rescale")

## ---- tidy=TRUE, tidy.opts=list(blank=FALSE, width.cutoff=35), eval=TRUE, fig.width=8----
plotCompareScores(test_annotation, x_name="expression", y_name="methylation_promoter")

## ----long-compute-time, tidy=TRUE, tidy.opts=list(blank=FALSE, width.cutoff=45), eval=FALSE----
#  #score with all four features contributing
#  test_annotation <- scorePval(test_annotation, weights=c(methylation_promoter=.3,
#                                                          methylation_body=.1,
#                                                          expression=.3,
#                                                          methylation_h3k4me1=.3))

## ---- tidy=TRUE, tidy.opts=list(blank=FALSE, width.cutoff=45), eval=FALSE-----
#  ## load REACTOME ##
#   load(system.file("data","Reactome.Symbol.Igraph.rda", package="SMITE"))
#  ## Run Spin-glass ##
#  test_annotation <- runSpinglass(test_annotation, network=REACTOME, maxsize=50, num_iterations=1000)
#  
#  ## Run goseq on individual modules to determine bias an annotate functions ##
#  test_annotation <- runGOseq(test_annotation, supply_cov=TRUE, coverage=read.table(system.file(
#      "extdata", "hg19_symbol_hpaii.sites.inbodyand2kbupstream.bed.gz", package="SMITE")),
#      type="kegg")

## ---- tidy=TRUE, tidy.opts=list(blank=FALSE, width.cutoff=60), eval=TRUE, fig.width=10, fig.height=9----
## search goseq output for keywords ##
searchGOseq(test_annotation, search_string="cell cycle")

## ---- tidy=TRUE, tidy.opts=list(blank=FALSE, width.cutoff=60), eval=TRUE, fig.width=10, fig.height=9----
## Draw a network ##
plotModule(test_annotation, which_network=6, layout="fr", label_scale=TRUE, compare_plot = FALSE)
## Compare two networks ##
plotModule(test_annotation, which_network=c(4,6), layout="fr", label_scale=TRUE, compare_plot = TRUE)


## ---- tidy=TRUE, tidy.opts=list(blank=FALSE, width.cutoff=60), eval=TRUE, fig.width=12,fig.height=6----
## Draw a network with goseq analysis ##
plotModule(test_annotation, which_network=1, layout="fr", goseq=TRUE, label_scale=FALSE)

Try the SMITE package in your browser

Any scripts or data that you put into this service are public.

SMITE documentation built on Nov. 8, 2020, 5:14 p.m.