Description Usage Arguments Details Value Author(s) References See Also Examples
Calculate the log likelihood values from maximum likelihood estimation.
1 2 3 | snpgdsIBDMLELogLik(gdsobj, ibdobj, k0 = NaN, k1 = NaN,
relatedness=c("", "self", "fullsib", "offspring",
"halfsib", "cousin", "unrelated"))
|
gdsobj |
an object of class |
ibdobj |
the |
k0 |
specified IBD coefficient |
k1 |
specified IBD coefficient |
relatedness |
specify a relatedness, otherwise use the values of k0 and k1 |
If (relatedness
== "") and (k0 == NaN or k1 == NaN), then return
the log likelihood values for each (k0, k1) stored in ibdobj. \
If (relatedness
== "") and (k0 != NaN) and (k1 != NaN), then return
the log likelihood values for a specific IBD coefficient (k0, k1). \
If relatedness
is: "self", then k0 = 0, k1 = 0; "fullsib", then
k0 = 0.25, k1 = 0.5; "offspring", then k0 = 0, k1 = 1; "halfsib", then
k0 = 0.5, k1 = 0.5; "cousin", then k0 = 0.75, k1 = 0.25; "unrelated", then
k0 = 1, k1 = 0.
Return a n-by-n matrix of log likelihood values, where n is the number of samples.
Xiuwen Zheng
Milligan BG. 2003. Maximum-likelihood estimation of relatedness. Genetics 163:1153-1167.
Weir BS, Anderson AD, Hepler AB. 2006. Genetic relatedness analysis: modern data and new challenges. Nat Rev Genet. 7(10):771-80.
Choi Y, Wijsman EM, Weir BS. 2009. Case-control association testing in the presence of unknown relationships. Genet Epidemiol 33(8):668-78.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | # open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())
YRI.id <- read.gdsn(index.gdsn(genofile, "sample.id"))[
read.gdsn(index.gdsn(genofile, "sample.annot/pop.group"))=="YRI"]
YRI.id <- YRI.id[1:30]
# SNP pruning
set.seed(10)
snpset <- snpgdsLDpruning(genofile, sample.id=YRI.id, maf=0.05,
missing.rate=0.05)
snpset <- sample(unlist(snpset), 250)
mibd <- snpgdsIBDMLE(genofile, sample.id=YRI.id, snp.id=snpset)
names(mibd)
# select a set of pairs of individuals
d <- snpgdsIBDSelection(mibd, kinship.cutoff=1/8)
head(d)
# log likelihood
loglik <- snpgdsIBDMLELogLik(genofile, mibd)
loglik0 <- snpgdsIBDMLELogLik(genofile, mibd, relatedness="unrelated")
# likelihood ratio test
p.value <- pchisq(loglik - loglik0, 1, lower.tail=FALSE)
flag <- lower.tri(mibd$k0)
plot(NaN, xlim=c(0,1), ylim=c(0,1), xlab="k0", ylab="k1")
lines(c(0,1), c(1,0), col="red", lty=3)
points(mibd$k0[flag], mibd$k1[flag])
# specify the allele frequencies
afreq <- snpgdsSNPRateFreq(genofile, sample.id=YRI.id,
snp.id=snpset)$AlleleFreq
subibd <- snpgdsIBDMLE(genofile, sample.id=YRI.id[1:25], snp.id=snpset,
allele.freq=afreq)
summary(c(subibd$k0 - mibd$k0[1:25, 1:25]))
# ZERO
summary(c(subibd$k1 - mibd$k1[1:25, 1:25]))
# ZERO
# close the genotype file
snpgdsClose(genofile)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.