Description Usage Arguments Details Value Author(s) References See Also Examples
To calculate the SNP loadings in Principal Component Analysis
1 | snpgdsPCASNPLoading(pcaobj, gdsobj, num.thread=1L, verbose=TRUE)
|
pcaobj |
a |
gdsobj |
an object of class |
num.thread |
the number of (CPU) cores used; if |
verbose |
if TRUE, show information |
Calculate the SNP loadings (or SNP eigenvectors) from the principal
component analysis conducted in snpgdsPCA
.
Returns a snpgdsPCASNPLoading
object if pcaobj
is
snpgdsPCAClass
, which is a list:
sample.id |
the sample ids used in the analysis |
snp.id |
the SNP ids used in the analysis |
eigenval |
eigenvalues |
snploading |
SNP loadings, or SNP eigenvectors |
TraceXTX |
the trace of the genetic covariance matrix |
Bayesian |
whether use bayerisan normalization |
avgfreq |
two times allele frequency used in |
scale |
internal parameter |
Or returns a snpgdsEigMixSNPLoadingClass
object if pcaobj
is
snpgdsEigMixClass
, which is a list:
sample.id |
the sample ids used in the analysis |
snp.id |
the SNP ids used in the analysis |
eigenval |
eigenvalues |
snploading |
SNP loadings, or SNP eigenvectors |
afreq |
allele frequency |
Xiuwen Zheng
Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS Genetics 2:e190.
Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 38, 904-909.
Zhu, X., Li, S., Cooper, R. S., and Elston, R. C. (2008). A unified association analysis approach for family and unrelated samples correcting for stratification. Am J Hum Genet, 82(2), 352-365.
snpgdsPCA
, snpgdsEIGMIX
,
snpgdsPCASampLoading
, snpgdsPCACorr
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | # open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())
PCARV <- snpgdsPCA(genofile, eigen.cnt=8)
SnpLoad <- snpgdsPCASNPLoading(PCARV, genofile)
names(SnpLoad)
# [1] "sample.id" "snp.id" "eigenval" "snploading" "TraceXTX"
# [6] "Bayesian" "avgfreq" "scale"
dim(SnpLoad$snploading)
# [1] 8 8722
plot(SnpLoad$snploading[1,], type="h", ylab="PC 1")
# close the genotype file
snpgdsClose(genofile)
|
Loading required package: gdsfmt
SNPRelate -- supported by Streaming SIMD Extensions 2 (SSE2)
Principal Component Analysis (PCA) on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
# of samples: 279
# of SNPs: 8,722
using 1 thread
# of principal components: 8
PCA: the sum of all selected genotypes (0,1,2) = 2446510
CPU capabilities: Double-Precision SSE2
Fri Jun 18 11:24:25 2021 (internal increment: 408)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
Fri Jun 18 11:24:25 2021 Begin (eigenvalues and eigenvectors)
Fri Jun 18 11:24:25 2021 Done.
SNP Loading:
# of samples: 279
# of SNPs: 8,722
using 1 thread
using the top 8 eigenvectors
SNP Loading: the sum of all selected genotypes (0,1,2) = 2446510
Fri Jun 18 11:24:25 2021 (internal increment: 3288)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
Fri Jun 18 11:24:25 2021 Done.
[1] "sample.id" "snp.id" "eigenval" "snploading" "TraceXTX"
[6] "Bayesian" "avgfreq" "scale"
[1] 8 8722
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.