Description Usage Arguments Details Value Author(s) See Also Examples
To determine sub groups of individuals using a specified dendrogram from hierarchical cluster analysis
1 2 3 |
hc |
an object of |
z.threshold |
the threshold of Z score to determine whether split the node or not |
outlier.n |
the cluster with size less than or equal to
|
n.perm |
the times for permutation |
samp.group |
if |
col.outlier |
the color of outlier |
col.list |
the list of colors for different clusters |
pch.outlier |
plotting 'character' for outliers |
pch.list |
plotting 'character' for different clusters |
label.H |
if TRUE, plotting heights in a dendrogram |
label.Z |
if TRUE, plotting Z scores in a dendrogram |
verbose |
if TRUE, show information |
The details will be described in future.
Return a list:
sample.id |
the sample ids used in the analysis |
z.threshold |
the threshold of Z score to determine whether split the node or not |
outlier.n |
the cluster with size less than or equal to
|
samp.order |
the order of samples in the dendrogram |
samp.group |
a vector of factor, indicating the group of each individual |
dmat |
a matrix of pairwise group dissimilarity |
dendrogram |
the dendrogram of individuals |
merge |
a data.frame of |
clust.count |
the counts for clusters |
Xiuwen Zheng
snpgdsHCluster
, snpgdsDrawTree
,
snpgdsIBS
, snpgdsDiss
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 | # open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())
pop.group <- as.factor(read.gdsn(index.gdsn(
genofile, "sample.annot/pop.group")))
pop.level <- levels(pop.group)
diss <- snpgdsDiss(genofile)
hc <- snpgdsHCluster(diss)
# close the genotype file
snpgdsClose(genofile)
###################################################################
# cluster individuals
#
set.seed(100)
rv <- snpgdsCutTree(hc, label.H=TRUE, label.Z=TRUE)
# the distribution of Z scores
snpgdsDrawTree(rv, type="z-score", main="HapMap Phase II")
# draw dendrogram
snpgdsDrawTree(rv, main="HapMap Phase II",
edgePar=list(col=rgb(0.5,0.5,0.5, 0.75), t.col="black"))
###################################################################
# or cluster individuals by ethnic information
#
rv2 <- snpgdsCutTree(hc, samp.group=pop.group)
# cluster individuals by Z score, specifying 'clust.count'
snpgdsDrawTree(rv2, rv$clust.count, main="HapMap Phase II",
edgePar = list(col=rgb(0.5,0.5,0.5, 0.75), t.col="black"),
labels = c("YRI", "CHB/JPT", "CEU"), y.label=0.1)
legend("bottomleft", legend=levels(pop.group), col=1:nlevels(pop.group),
pch=19, ncol=4, bg="white")
###################################################################
# zoom in ...
#
snpgdsDrawTree(rv2, rv$clust.count, dend.idx = c(1),
main="HapMap Phase II -- YRI",
edgePar=list(col=rgb(0.5,0.5,0.5, 0.75), t.col="black"),
y.label.kinship=TRUE)
snpgdsDrawTree(rv2, rv$clust.count, dend.idx = c(2,2),
main="HapMap Phase II -- CEU",
edgePar=list(col=rgb(0.5,0.5,0.5, 0.75), t.col="black"),
y.label.kinship=TRUE)
snpgdsDrawTree(rv2, rv$clust.count, dend.idx = c(2,1),
main="HapMap Phase II -- CHB/JPT",
edgePar=list(col=rgb(0.5,0.5,0.5, 0.75), t.col="black"),
y.label.kinship=TRUE)
|
Loading required package: gdsfmt
SNPRelate -- supported by Streaming SIMD Extensions 2 (SSE2)
Individual dissimilarity analysis on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
# of samples: 279
# of SNPs: 8,722
using 1 thread
Dissimilarity: the sum of all selected genotypes (0,1,2) = 2446510
Dissimilarity: Wed Dec 23 15:59:42 2020 0%
Dissimilarity: Wed Dec 23 15:59:43 2020 100%
Determine groups by permutation (Z threshold: 15, outlier threshold: 5):
Create 3 groups.
Create 4 groups.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.