Description Slots Constructor Methods Accessor methods Author(s) References Examples
The Class SquadSimResServiceImpl
contains the information needed to plot the simulation matrix, the prediction map and the correlation circle.
folder
:Object of class "character"
, path to the folder to find the SQUAD (1) data.
time
:Object of class "numeric"
, time point used to get the interpolated activate state value.
ncolor
:Object of class "numeric"
, number of color code to used in the prediction map. default = 5
legend
:Object of class "vector"
, contains the name of each node of the model (Must appear in the same order than the simulation).
indexDeno
:Object of class "numeric"
, the index of the file to used as denominator (the names of each file in the folder should contain an index, i.e 1_xxx.txt), default = 1
method
:Object of class "character"
, the fitting method to interpolate the curve ("linear" to get a straight line (2) or "lowess" to get a smoothed interpolation (3)).
selectNode
:Object of class "character"
, contains the name of the node to display.
conditionList
:Object of class "character"
, list of the perturbation condition names.
simResService(folder, time, ncolor, legend, indexDeno, method, selectNode, conditionList)
: construct a instance of SquadSimResServiceImpl
.
signature(object = "SquadSimResServiceImpl")
: Build and display the table of interpolated/fitted values (see getFittedTable for more details).
signature(object = "SquadSimResServiceImpl")
: plot the simulation matrix (see plotSimMatrix for more details).
signature(object = "SquadSimResServiceImpl")
: plot the prediction map (see plotPredMap for more details).
signature(object = "SquadSimResServiceImpl")
: plot the correlation circle from PCA analyis (see plotCC for more details).
See examples Section.
Martial Sankar
(1) Di Cara A, Garg A, De Micheli G, Xenarios I, Mendoza L (2007) Dynamic simulation of regulatory networks using SQUAD. BMC Bioinformatics 8: 462. (2) Cleveland, W. S. (1979) Robust locally weighted regression and smoothing scatterplots. J. Amer. Statist. Assoc. 74, 829:836. (3) Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth And Brooks/Cole.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | fpath <- system.file("extdata", package="SQUADD")
fileModel <- file.path(fpath,"data_IAA")
nm <- c("ARF(a)", "ARF(i)", "AR_Genes", "Aux/IAA", "BES1/BZR1", "BIN2", "BR", "BRI1-BAK1","BRR_Genes","BRX","BR_Biosynthesis","BZR1", "DO", "IAA", "IAA_Biosynthesis", "NGA1", "PIN", "SCFTir1","StimAux", "StimBR")
t <- 50
## call constructor
obj <- simResService(folder=fileModel, time=t, ncolor=5,legend=nm, indexDeno=1, method="lowess")
## Apply method
tab <- getFittedTable(obj)
obj["selectNode"] <-c("DO","IAA_Biosynthesis","BR_Biosynthesis", "IAA", "BR")
plotSimMatrix(obj)
plotPredMap(obj)
obj["conditionList"] <- c("Normal", "brxlof", "BRrescue","brxarfilof", "brxarfiBRrescue", "brxgof")
plotCC(obj)
## getter/setter test
obj["time"] <- 45
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.