Defines functions svplsSurr

Documented in svplsSurr

#' @title svplsSurr
#' @description This function extracts the surrogated estimates of the hidden variables in the
#' data by using the partial least squares (PLS) algorithm
#' on two multivariate random matrices. It provides the user with two options:
#' (1) \bold{Unsupervised SVAPLS}: Here a standard linear regression model is first used on
#' a transformed version of the expression count matrix to estimate the primary signals
#' of differential expression for all the features. The fitted model residuals and the
#' transformed count matrix are then organized respectively into two multivariate matrices
#' \code{E} and \code{Y}, in such a way that each column corresponds to a certain feature.
#' \code{Y} is then regressed on \code{E} using a Non-linear partial least squares (NPLS)
#' algorithm and the extracted factor estimates (scores) in the column-space of \code{Y}
#' are deemed as the surrogate variables.
#' (2) \bold{Supervised SVAPLS}: In case information on a set of control features (control genes, transcripts, spike-ins, etc.)
#' is provided, this function uses a Non-linear partial least squares (NPLS) algorithm to regress \code{Y} on another expression
#' matrix \code{Y.cont} corresponding to the set of controls and the factor estimates (scores) in the column-space of \code{Y.cont}
#' are considered as the surrogate variables.
#' An optimal subset of these variables is then selected either manually (manual selection) or by testing them for
#' statistical significance (automatic selection). For the automatic selection the function  regresses the first right
#' singular vector of the residual matrix \code{E} (for Unsupervised SVAPLS) or the control matrix \code{Y.sub}
#' (for Supervised SVAPLS), on all the surrogate variables and the estimated regression coefficients are used to perform
#' a t-test with a certain user-specified pvalue cutoff. The variables yielding a pvalue below the cutoff are returned
#' as the optimal surrogate variables.
#' @param dat The original feature expression count matrix.
#' @param group a factor representing the sample indices belonging to the two
#' different groups.
#' @param controls The set of control features with no differential expression
#' between the two groups (set to NULL by default).
#' @param phi The transforming function to be applied on the original feature
#' expression count data (set to be log function with an offset \code{const}).
#' @param const The offset parameter for the transforming function \code{phi}
#' (set to 1 by default).
#' @param pls.method The non-linear partial least squares method to be used.
#' The different options available are: the classical orthogonal scores
#' algorithm ("oscorespls, default), the kernel algorithm ("kernelpls") and
#' wide kernel algorithm ("widekernelpls"). Using the "oscorespls" option is
#' recommended for producing mutually orthogonal surrogate variables.
#' @param max.surrs The maximum number of factor estimates to be extracted
#' from the NPLS algorithm (set to 3 by default).
#' @param opt.surrs The index vector of factor estimates to be taken as the
#' optimal surrogate variables (used for manual selection only).
#' @param surr.select The method for selecting the optimal surrogate variables
#' ("automatic" or "manual").
#' @param cutoff The user-specified pvalue cutoff for testing the significance
#' of the extracted surrogate variables (set to 1e-07 by default) (used for "automatic" selection only).
#' @param parallel Logical, indicating if the computations should be
#' parallelized or not (set to \code{FALSE} by default).
#' @param num.cores The requested number of cores to be used in the parallel
#' computations inside the function (used only when \code{parallel} is
#' \code{TRUE}, \code{NULL} by default).
#' @param plot Logical, if \code{TRUE} a barplot of the variance proportions
#' explained by the significant surrogate variables is returned (set to
#' \code{FALSE} by default).
#' @return surr A \code{data.frame} of the optimal surrogate variables.
#' @return prop.vars A vector of the variance proportions explained by the
#' variables in \code{surr}.
#' @examples
#' ##Loading a simulated RNAseq gene expression count dataset
#' data(sim.dat)
#' ##Extracting the significant surrogate variables
#' group = as.factor(c(rep(1, 10), rep(-1, 10)))
#' sv <- svplsSurr(dat = sim.dat, group = group, surr.select = "automatic")
#' slotNames(sv)
#' head(surr(sv))
#' head(prop.vars(sv))
#' @rdname svplsSurr
#' @export
svplsSurr <-
  function(dat, group, controls = NULL, phi = function(x) log(x + const), const = 1,
           pls.method = "oscorespls", max.surrs = 3, opt.surrs = 1, surr.select = c("automatic", "manual"), cutoff = 10^-7, parallel = FALSE,
           num.cores = NULL, plot = FALSE){

    if (class(dat) == "matrix") data = dat
    if (class(dat) == "SummarizedExperiment") data = assay(dat)
    if (class(dat) == "DGEList") data = dat$counts
    Y = phi(data)

    ###Fit an Initial Model to Y and organize the fitted model residuals into a matrix
    if (parallel){
      e = unlist(mclapply(1:nrow(Y), function(u) lm(Y[u, ] ~ group)$resid, mc.cores = num.cores))
    if (!parallel) e = unlist(lapply(1:nrow(Y), function(u) lm(Y[u, ] ~ group)$resid))

    E = matrix(e, nrow(Y), ncol(Y), byrow = TRUE)

    ###Extract the signatures of hidden variation using Partial Least Squares
    if (!is.null(controls)) pls.fit = mvr(t(Y) ~ t(Y[controls, ]), ncomp = max.surrs, method = pls.method)
    if (is.null(controls)) pls.fit = mvr(t(E) ~ t(Y), ncomp = max.surrs, method = pls.method)

    sc = scores(pls.fit)
    surr.effect = paste("+", paste("sc[, ", paste(as.character(1:ncol(sc)), "]", sep = ""), sep = "", collapse = "+"), sep = "")

    if (surr.select == "automatic"){
      if (!is.null(controls)) pvals = anova(lm(as.formula(paste("svd(Y[controls, ])$v[, 1] ~", surr.effect, sep = " "))))[, 5]
      if (is.null(controls)) pvals = anova(lm(as.formula(paste("svd(E)$v[, 1] ~", surr.effect, sep = " "))))[, 5]
      index = which(pvals < cutoff)

    if (surr.select == "manual") index = opt.surrs

    if (length(index) == 0) stop("No Significant Surrogate Variables")
    if (length(index) > 0){
      surr = sc[, index]

      if (length(index) == 1) vars = var(surr)
      if (length(index) > 1)  vars = apply(surr, 2, var)
      prop.vars = vars/sum(vars)

      if (plot == TRUE){
        surr.df = as.data.frame(surr[, 1:max.surrs])
        colnames(surr.df) = paste("surr", as.character(1:max.surrs), sep = "")
        grp = factor(colnames(surr.df), levels = colnames(surr.df))

        bp.df = data.frame(grp, prop.vars)
        bp <- qplot(grp, data = bp.df, geom="bar", weight = prop.vars) + scale_x_discrete("Surrogate Variable") + scale_y_continuous("Explained Variance Proportion")
        bp + theme(axis.text.x = element_text(angle = 0, hjust = 1))

      res = new("svplsSurr", surr = surr, prop.vars = prop.vars)

Try the SVAPLSseq package in your browser

Any scripts or data that you put into this service are public.

SVAPLSseq documentation built on April 28, 2020, 6:30 p.m.