SpidermiRanalyze_Community_detection: Find community detection

Description Usage Arguments Value Examples

View source: R/SpidermiRanalyze.R

Description

SpidermiRanalyze_Community_detection try to find dense subgraphs in directed or undirected graphs, by optimizing some criteria.

Usage

1

Arguments

data

SpidermiRanalyze_mirna_network output or SpidermiRanalyze_mirna_gene_complnet

type

with the parameter type the user can choose the algorithm to calculate the community structure EB edge.betweenness.community FC fastgreedy.community WC walktrap.community SC spinglass.community LE leading.eigenvector.community LP label.propagation.community

Value

a list of clusters with their number of genes

Examples

1
2
miRNA_cN <-data.frame(gA=c('hsa-let-7a','hsa-miR-300'),gB=c('FOXM1','KPNA4'),stringsAsFactors=FALSE)
comm<-  SpidermiRanalyze_Community_detection(data=miRNA_cN,type="FC") 

SpidermiR documentation built on Nov. 8, 2020, 8:25 p.m.