Description Usage Arguments Details Author(s) See Also Examples
View source: R/beadLevelData_expressionQCPipeline.R
Function to produce various QC plots and HTML summary pages for bead-level data.
1 | expressionQCPipeline(BLData, transFun = logGreenChannelTransform, qcDir = "QC", plotType = ".jpeg", horizontal = TRUE, controlProfile = NULL, overWrite=FALSE,nSegments=9,outlierFun=illuminaOutlierMethod,tagsToDetect = list(housekeeping = "housekeeping", Biotin = "biotin", Hybridisation = "cy3_hyb"),zlim=c(5,7),positiveControlTags = c("housekeeping", "biotin"), hybridisationTags = c("cy3_hyb"), negativeTag= "negative", boxplotFun = logGreenChannelTransform, imageplotFun = logGreenChannelTransform)
|
BLData |
a |
transFun |
what transformation function to apply |
qcDir |
a directory to write output to |
plotType |
desired file extension for plots (jpeg or png) |
horizontal |
if TRUE imageplots and outlier plots are produced with longest edge on x axis |
controlProfile |
a data frame defining all control types. not required if annotation information is stored in the bead-level object |
overWrite |
if FALSE any plots that exist in the directory will not be recreated |
nSegments |
how many segments each section is divided into |
outlierFun |
a function to removed outliers |
tagsToDetect |
which control types to used in the detection metrics |
zlim |
the range of the imageplots |
boxplotFun |
what transformation function to be used in boxplots |
imageplotFun |
what transformation function to be used for imageplots |
positiveControlTags |
character strings defining which positive controls to plot |
hybridisationTags |
additional control types to be plotted |
negativeTag |
character string to identify which control type in the control profile corresponds to negative controls |
This function is a convient way of automatically generating QC plots for each section within a beadLevelData object. The following plots are produced for each section. i) scatter plots of all bead observation of the positive controls. See poscontPlot. ii) Further scatter plots of other controls of interest using poscontPlot. iii) imageplot (imageplot) of section data after applying transformation function iv) plot of outlier locations using specified outlier function. A HTML page displaying all the plots is produced.
After plots have been produced for each section, makeQCTable is run to make a table of mean and standard deviations for the defined control types, followed by the results of calculateOutlierStats and controlProbeDetection for each section and written to a HTML page in the requested directory.
The function should be able to run automatically for expression data that has its annotation stored using setAnnotation or using readIllumina. Otherwise the controlProfile data frame can be used to define the control types on the array and their associated ArrayAddressIDs. Similarly, the function assumes single-channel data but a transformation function can be passed.
Mark Dunning
poscontPlot
imageplot
outlierplot
controlProbeDetection
1 2 3 4 5 6 7 8 9 10 11 12 | if(require(beadarrayExampleData)){
## Not run:
data(exampleBLData)
expressionQCPipeline(exampleBLData, horizontal=T)
## End(Not run)
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.